Сучасні підходи та нові методичні можливості в оцінюванні функціонального стану дрібних лабораторних тварин

Yu. M. Kolesnyk, O. V. Hancheva, A. V. Abramov, M. Yu. Kolesnyk, T. V. Ivanenko, S. V. Tishсhenko, M. V. Danukalo, M. I. Fedotova

Анотація


Сучасні біомедичні дослідження, що проводяться в наукових лабораторіях, є базисом не тільки для вивчення патогенетичних механізмів формування та прогресування хвороб – сьогодні вони широко використовуються для розробки високоінформативних методів діагностики, створення нових лікарських препаратів, вивчення впливу на організм тих фармсполук, що розробляються вперше, з оцінюванням їхньої потенційної ефективності. У статті висвітлено нові підходи та можливості оцінювання функціонального стану дрібних лабораторних тварин з урахуванням сучасних міжнародних вимог щодо проведення досліджень та інтерпретації результатів, котрі отримали.


Ключові слова


діагностика функціонального стану серця;, ехокардіографія; електрокардіографія; біоімпедансметрія; артеріальний тиск; щури

Повний текст:

PDF (Русский)

Посилання


Zutphen van, L. F., Baumans, V., & Beynen, A. C. (2001) Principles of Laboratory Animal Science. Amsterdam: Elsevier.

Anon. (2014). The 2014 Lush Prize: A Global View of Animal Experiments 2014, 42pp. Retrieve from: http:// www.lushprize.org/wp-content/uploads/Global_View_of-Animal_Experiments_2014.pdf (Accessed 05.11.15).

Turner, P. V., Brab, Th., Pekow, C., & Vasbinder, M. A. (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, 50(5), 600–613.

Konopelski, P., & Ufnal, M. (2016) Electrocardiography in Rats: a Comparison to Human. Physiological Research, 65, 717–725.

Kuzmenko, N. V, Pliss, M. G., & Tsyrlin, V. A. (2016) Invazivnye i neinvazivnye metody registracii parametrov gemodinamiki u krys linii Wistar v modeli renovaskulyarnoj gipertenzii (2 pochki, 1 zazhim) [Invasive and non-invasive methods of hemodynamic parameters registration in Wistar rats in renovaskular hypertension model (2 kidney, 1 clip)]. Translyacionnaya medicina, 3(2), 61–69. [in Russian].

Krege, J. H., Hodgin, J. B., Hagaman, J. R., & Smithies, O. (1995) A Noninvasive Computerized Tail-Cuff System for Measuring Blood Pressure in Mice. Hypertension, 25, 1111–1115.

Baranovskij, A. Yu. (2012) Dietologiya [Dietetics]. Saint Petersburg: Piter [in Russian].

Nikolaev, D. V., Smirnov, A. V., Bobrinskaya, I. G., & Rudnev, S. G. (2009) Bioimpedansnyj analiz sostava tela cheloveka [Bioimpedance analysis of the composition of the human body]. Moscow: Nauka [in Russian].

Tornuev, Yu. V., Nepomnyashchikh, D. L., Nikityuk, D. B., Lapij, G. A., Molodykh, O. P., Nepomnyashchikh, R. D., et al. (2014) Diagnosticheskiye vozmozhnosti neinvazivnoj bioimpedansometrii [Diagnostic capabilities of noninvasive bioimpedanceometry]. Fundamental'nyye issledovaniya, 10–4, 782–788. [in Russian].

Smith, D. Jr., Johnson, M., & Nagy, T. (2009) Precision and accuracy of bioimpedance spectroscopy for determination of in vivo body composition in rats. International Journal of Body Composition Research, 7(1), 21–26.

Yokoi, K., Lukaski, H. C., Uthus, E. O., & Nielsen, F. H. (2001) Use of bioimpedance spectroscopy to estimate body water distribution in rats fed high dietary sulfur amino acids. Journal of Nutrition, 131(4), 1302–1308.

Stefanov, O. V. (2001) Doklinichni doslidzhennia likarskykh zasobiv (metodychni rekomendatsii) [Preclinical research of medicinal products (methodical recommendations)]. Kyiv: Avitsena [in Ukrainian].

Kawahara, Y., Tanonaka, K. Daicho, T., Nawa, M., Oikawa, R., Nasa, Y., & Takeo, S. (2005) Preferable anesthetic conditions for echocardiographic determination of murine cardiac function. Journal of Pharmacological Sciences, 99, 95–104.

Xu, Q., Ming, Z., Dart, A. M., & Du, X. J. (2007) Optimizing dosage of ketamine and xylazine in murine echocardiography. Clinical and Experimental Pharmacology and Physiology, 34(5-6), 499–507. doi: 10.1111/j.1440-1681.2007.04601.x

Gao, Sh., Ho, D., Vatner, E., & Vatner, S. F. (2011) Echocardiography in mice. Current Protocols in Mouse Biology, 1, 71–83. doi: 10.1002/9780470942390.mo100130

Darbandi Azar, A., Tavakoli, F., Moladoust, H., Zare, A., & Sadeghpour, A. (2014) Echocardiographic evaluation of cardiac function in ischemic rats: value of M-mode echocardiography. Research in Cardiovascular Medicine, 3(4), е22941. doi: 10.5812/cardiovascmed.2294

Dragoi Galrinho, R., Ciobanu, A. O., Rimbas, R. C., Manole, C. G., Leena, B. M., & Vinereanu, D. (2015) New echocardiographic protocol for the assessment of experimental myocardial infarction in rats. MAEDICA – a Journal of Clinical Medicine, 10(2), 85–90.

Lakomkin, V. L., Abramov, A. A., Gramovich, V. V., Vyborov, O. N., Lukoshkova, E. V., Ermishkin, V. V., & Kapelko, V. I. (2017) Dinamika formirovaniya sistolicheskoj disfunkcii serdca pri doksorubicinovoj kardiomiopatii [The Time Course of Formation Of Systolic Dysfunction of the Heart in Doxorubicin Cardiomyopathy]. Kardiologiya, 57, 59–64. [in Russian].

Watson, L. E., Jewell, C., Song, J., & Dostal, D. E. (2013) Echocardiographic effects of eplerenone and aldosterone in hypertensive rats. Frontiers in Bioscience, 1(5), 922–927.




DOI: https://doi.org/10.14739/2310-1237.2017.3.118770

Посилання

  • Поки немає зовнішніх посилань.


ПАТОЛОГІЯ   Лицензия Creative Commons
Запорізький державний медичний університет