DOI: https://doi.org/10.14739/2310-1237.2018.1.128847

Визначення нейтрофільних позаклітинних пасток і концентрації коротколанцюгових жирних кислот при сальмонела-індукованому запаленні кишечника на тлі введення ванкоміцину та Bacteroides fragilis

Yu. V. Bukina, B. О. Varynskyi, A. V. Voitovich, G. D. Koval, A. G. Kaplaushenko, А. M. Kamyshnyі

Анотація


Мета роботи – вивчити особливості формування нейтрофільних позаклітинних пасток у крові та кишково-асоційованій лімфоїдній тканині при сальмонела-індукованому запаленні на тлі введення ванкоміцину і B. fragilis, а також визначити концентрацію коротколанцюгових жирних кислот у просвітній мікрофлорі щурів за допомогою хромато-мас-спектрометрії.

Матеріали та методи. Здійснили дослідження за кількісним підрахунком Sytox+-нейтрофілів і НПП у зіскрібках слизової оболонки клубового відділу кишечника та у крові методом імунофлуоресцентної мікроскопії, а також визначення концентрації КЛЖК у просвітній мікрофлорі щурів хромато-мас-спектрометричним методом.

Результати. Введення ванкоміцину сприяло збільшенню кількості Sytox+-клітин у зіскрібках слизової оболонки кишечника та у крові на 55 % і в 2,5 раза (II група). При одночасному введенні ванкоміцину та S. enteritidis (III група), S. typhimurium (IV група) середнє значення Sytox+-клітин у зіскрібках зі слизової оболонки збільшилося на 30 % і в 2,4 раза, а в крові на 30 % (IV група), також визначили зменшення кількості НПП на 40 % (IV група). Введення B. fragilis на тлі попередньої обробки ванкоміцином та інфікування сальмонелами показало зниження Sytox+-клітин у зіскрібках слизової оболонки кишечника на 43 % та 53 %, у крові – на 46 % і 58 % (V і VI групи), а кількість НПП у зіскрібках зі слизової оболонки кишечника та у крові збільшувалася на 43 % і 40 % (V група), а також у 2,3 і 2,0 раза (VI група). При інфікуванні щурів S. typhimurium на тлі попередньої обробки ванкоміцином і введення B. fragilis концентрація ацетату у зразках збільшилася вдвічі; пропіонату – у 6 разів, бутирату – у 3 рази.

Висновки. Введення B. fragilis при інфікуванні S. enteritidis і S. typhimurium на тлі попередньої обробки ванкоміцином призводить до зменшення кількості Sytox+-клітин у зіскрібках слизової оболонки клубової кишки та у крові, але індукує генерацію НПП, а також зумовлює збільшення концентрації КЛЖК у просвітній мікрофлорі щурів, що сприяє зменшенню сальмонела-індукованого запалення, відновленню цілісності епітелію кишечника.

 

 


Ключові слова


мікробіом; сальмонела; бактероїди; нейтрофільні пастки; коротколанцюгові жирні кислоти; хромато-мас-спектрометрія; імунофлуоресценція

Повний текст:

PDF (English)

Посилання


Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., et al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504, 446–450. doi: 10.1038/nature12721.

Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., et al. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341, 569–573. doi: 10.1126/science.1241165.

Masui, R., Sasaki, M., Funaki, Y., Ogasawara, N., Mizuno, M., Iida, A., et al. (2013) G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflammatory bowel diseases, 19, 2848–2856. doi: 10.1097/01.MIB.0000435444.

Pluznick, J. A. (2014) Novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes, 5, 202–207. doi: 10.4161/gmic.27492.

Bukina, Yu. V., Kamyshnyi, A. M., Polishchuk, N. N., & Topol, I. A. (2017) Sal'monella-inducirovannye izmeneniya kishechnoj mikrobioty i transkriptoma genov immunnogo otveta na fone vvedeniya vankomicina i Bacteroides fragilis [Salmonella-induced changes in the gut microbiota and immune response genes transcriptome during administration of vancomycin and Bacteroides fragilis]. Pathologia, 14, 1(39), 12–19. [in Russian]. doi: https://doi.org/10.14739/2310-1237.2017.1.97504.

Pieterse, E., Rother, N., Yanginlar, C., Hilbrands, L. B., & Vlag van der, J. (2016) Neutrophils Discriminate between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps. Frontiers in Immunology, 7, 484. doi: 10.3389/fimmu.2016.00484.

Dąbrowska, D., Jabłońska, E., Garley, M., Ratajczak-Wrona, W., & Iwaniuk, A. (2016) New Aspects of the Biology of Neutrophil Extracellular Traps. Scandinavian Journal of Immunology, 84, 317–322. doi: 10.1111/sji.12494.

Remijsen, Q., Kuijpers, T., Wirawan, E., Lippens, S., Vandenabeele, P., & Vanden Berghe, T. (2011) Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death & Differentiation, 18(4), 581–588. doi: 10.1038/cdd.2011.1.

Kaplan, M. J., & Radic, M. (2012) Neutrophil extracellular traps: Double-edged swords of innate immunity. The Journal of Immunology, 189(6), 2689–2695. doi: 10.4049/jimmunol.1201719.

Von Köckritz-Blickwede, M., & Nizet, V. (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. Journal of Molecular Medicine, 87(8), 775–783. doi: 10.1007/s00109-009-0481-0.

Urban, C. F., Reichard, U., Brinkmann, V., Zychlinsky, A. (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiology, 8(4), 668–676. doi: 10.1111/j.1462-5822.2005.00659.x.

Urban, C. F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., Nacken, W., et al. (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathology, 5(10), e1000639. doi: 10.1371/journal.ppat.1000639.

Arazna, M., Pruchniak, M. P., & Demkow, U. (2013) Neutrophil extracellular traps in bacterial infections: Strategies for escaping from killing. Respiratory Physiology & Neurobiology, 187(1), 74–77. doi: 10.1016/j.resp.2013.03.002.

Yipp, B. G., Petri, B., Salina, D., Jenne, C. N., Scott, B. N., Zbytnuik, L. D., et al.

(2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Natural Medicine, 18(9), 1386–1393. doi: 10.1038/nm.2847.

Dworski, R., Simon, H-U., Hoskins, A., & Yousefi, S. (2011) Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. Journal of Allergy and Clinical Immunology, 127(5), 1260–1266. doi: 10.1016/j.jaci.2010.12.1103.

Konstantinidis, T., Kambas, K., Mitsios, A., Panopoulou, M., Tsironidou, V., Dellaporta, E., et al. (2015) Immunomodulatory Role of Clarithromycin in Acinetobacter baumannii Infection via Formation of Neutrophil Extracellular Traps. Antimicrobial Agents and Chemotherapy, 60(2), 1040–1048. doi: 10.1128/AAC.02063-15.

Jagtap, A. G., Shirke, S. S., & Phadke, A. S. (2004) Effect of polyherbal formulation on experimental models of inflammatory bowel diseases. Journal of Ethnopharmacology, 90(2–3), 195–204. doi: 10.1016/j.jep.2003.09.042.

Loginov, V. A., Ardatskaya, M. D., & Minushkin, O. N. (2014) Syndrome of excessive bacterial growth in patients with a decreased acid-producing function of the stomach. Experimental and clinical gastroenterology, 12, 30–36.

Marcos, V., Zhou, Z., Yildirim, A. O., Bohla, A., Hector, A., Vitkov L, et al. (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Natural Medicine, 16, 1018–1023. doi: 10.1038/nm.2209.

Dubois, A. V., Gauthier, A., Bréa, D., Varaigne, F., Diot, P., Gauthier, F., & Attucci, S. (2012) Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. American Journal of Respiratory Cell and Molecular Biology, 47, 80–86. doi: 10.1165/rcmb.2011-0380OC.

Delgado-Rizo, V., Martínez-Guzmán, M. A., Iñiguez-Gutierrez, L., García-Orozco, A., Alvarado-Navarro, A., & Fafutis-Morris, M. (2017) Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Frontiers in Immunology, 8, 81. doi: 10.3389/fimmu.2017.00081.

Pilsczek, F. H., Salina, D., Poon, K. K., Fahey, C., Yipp, B. G., Sibley, C. D., et al. (2015) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. Journal of Immunology, 185(12), 7413–7425. doi: 10.4049/jimmunol.1000675.

Al-Khafaji, A. B., Tohme, S., Yazdani, H. O., Miller, D., Huang, H., & Tsung, A. (2016) Superoxide induces neutrophil extracellular trap formation in a TLR-4 and NOX-dependent mechanism. Molecular Medicine, 22, 621–631. doi: 10.2119/molmed.2016.00054.

Lewis, H. D., Liddle, J., Coote, J. E., Atkinson, S. J., Barker, M. D., Bax, B. D., et al. (2015) Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature Chemical Biology, 11(3), 189–191. doi: 10.1038/nchembio.1735.

Li, P., Li, M., Lindberg, M. R., Kennett, M. J., Xiong, N., & Wang, Y. (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. The Journal of Experimental Medicine, 207, 1853–1862. doi: 10.1084/jem.20100239.

Papayannopoulos, V., Metzler, K. D., Hakkim, A., & Zychlinsky, A. (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. The Journal of Cell Biology, 191(3), 677–691. doi: 10.1083/jcb.201006052.

Neeli, I., Khan, S. N., & Radic, M. (2008) Histone deimination as a response to inflammatory stimuli in eutrophils. Journal of Immunology, 180, 1895–1902. doi: https://doi.org/10.4049/jimmunol.180.3.1895.

Branitzki-Heinemann, K., Möllerherm, H., Völlger, L., Husein, D. M., Buhr, de N., Blodkamp, S., et al. (2016) Formation of neutrophil extracellular traps under low oxygen level. Frontiers in Immunology, 7, 518. doi: 10.3389/fimmu.2016.00518.

Douda, D. N., Khan, M. A., Grasemann, H., & Palaniyar, N. (2015) SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proceedings of the National Academy of Sciences, 112(9), 2817–2822. doi: 10.1073/pnas.1414055112.

Yipp, B. G., & Kubes, P. (2013) NETosis: how vital is it? Blood, 122(16), 2784–2794. doi: 10.1182/blood-2013-04-457671.

Byrd, A. S., O’Brien, X. M., Johnson, C. M., Lavigne, L. M., & Reichner, J. S. (2013) An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. Journal of Immunology, 190(8), 4136–4148. doi: 10.4049/jimmunol.1202671.

Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., et al. (2007) TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Natura Medicine, 13(4), 463–469. doi: 10.1038/nm1565.

Yipp, B. G., Petri, B., Salina, D., Jenne, C. N., Scott, B. N. V., Zbytnuik, L. D., et al. (2012) Dynamic NETosis is carried out by live neutrophils in human and mouse bacterial abscesses and during severe gram-positive infection. Natura Medicina, 18(9), 1386–1393. doi: 10.1038/nm.2847.

Carestia, A., Kaufman, T., Rivadeneyra, L., Landoni, V. I., Pozner, R. G., Negrotto, S., et al. (2016) Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. Journal of Leukocyte Biology, 99(1), 153–162. doi: 10.1189/jlb.3A0415-161R.

Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I., & Simon, H. U. (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death & Differentiation, 16, 1438–1444. doi: 10.1038/cdd.2009.96.

Sørensen, O. E., & Borregaard, N. (2016) Neutrophil extracellular traps - the dark side of neutrophils. Journal of Clinical Investigation, 126(5), 1612–1620. doi: 10.1172/JCI84538.

Masuda, S., Nakazawa, D., Shida, H., Miyoshi, A., Kusunoki, Y., Tomaru, U., & Ishizu, A. (2016) NETosis markers: Quest for specific, objective, and quantitative markers. Clinica Chimica Acta, 459, 89–93. doi: 10.1016/j.cca.2016.05.029.

de Buhr, N., & von Köckritz-Blickwede, M. (2016) How Neutrophil Extracellular Traps Become Visible. Journal of Immunology Research, 3, 1–13. doi: 10.1155/2016/4604713.

Corrêa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T., & Vinolo, M. A. (2016) Regulation of immune cell function by short-chain fatty acids. Clinical & Translational Immunology, 5(4), e73. doi: 10.1038/cti.2016.17.

Rodrigues, H. G., Takeo Sato, F., Curi, R., & Vinolo, M. A. (2016) Fatty acids as modulators of neutrophil recruitment, function and survival. European Journal of Pharmacology, 785, 50–58. doi: 10.1016/j.ejphar.2015.03.098.

Vinolo, M. A., Rodrigues, H. G., Hatanaka, E., Sato, F. T., Sampaio, S. C., & Curi, R. (2011) Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. The Journal of Nutritional Biochemistry, 22(9), 849–855. doi: 10.1016/j.jnutbio.2010.07.009.

Vinolo, M. A., Ferguson, G. J., Kulkarni, S., Damoulakis, G., Anderson, K., Bohlooly, Y. M., et al. (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE, 6(6), e21205. doi: 10.1371/journal.pone.0021205.

Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007) Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World Journal of Gastroenterology, 13(20), 2826–2832. doi: 10.3748/wjg.v13.i20.2826.

Sina, C., Gavrilova, O., Förster, M., Till, A., Derer, S., Hildebrand, F., et al. (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. Journal of Immunology, 183(11), 7514–7522. doi: 10.4049/jimmunol.0900063.

Le Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., et al. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. The Journal of Biological Chemistry, 278(28), 25481–25489. doi: 10.1074/jbc.M301403200.

Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Schilter, H. C., et al. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282–1286. doi: 10.1038/nature08530.

Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., et al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446–50. doi: 10.1038/nature12721.

Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., et al. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569–73. doi: 10.1126/science.1241165.

Vinolo, M. A., Rodrigues, H. G., Nachbar, R. T., Curi, R. (2011) Regulation of inflammation by short chain fatty acids. Nutrients, 3(10), 858–876. doi: 10.3390/nu3100858.

Vinícius, A. O., Câmara, N. O. S., & Moraes-Vieira, M. P. (2015) Adipokines as Drug Targets in Diabetes and Underlying Disturbances. Journal of Diabetes Research, 2015, 11. doi: http://dx.doi.org/10.1155/2015/681612.

Mishiro, T., Kusunoki, R., Otani, A., Ansary, M. M., Tongu, M., Harashima, N., et al. (2013) Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. Laboratory Investigation, 93(7), 834–843. doi: 10.1038/labinvest.2013.70.

Kim, M., Qie, Y., Park, J., & Kim, C. H. (2016) Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host & Microbe, 20(2), 202–14. doi: 10.1016/j.chom.2016.07.001.

Mills, S. W., Montgomery, S. H., & Morck, D. W. (2006) Evaluation of the effects of short-chain fatty acids and extracellular pH on bovine neutrophil function in vitro. American Journal of Veterinary Research, 67(11), 1901–1907. doi: 10.2460/ajvr.67.11.1901.

Usami, M., Kishimoto, K., Ohata, A., Miyoshi, M., Aoyama, M., Fueda, Y., & Kotani, J. (2008) Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutrition Research, 28(5), 321–8. doi: 10.1016/j.nutres.2008.02.012.

Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Schilter, H. C., et al. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282–1286. doi: 10.1038/nature08530.

Aoyama, M., Kotani, J., & Usami, M. (2010) Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6), 653–61. doi: 10.1016/j.nut.2009.07.006.

Papayannopoulos, V. (2018) Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology, 18(2), 134–147. doi: 10.1038/nri.2017.105.

Grinberg, N., Elazar, S., Rosenshine, I., Shpigel, N. Y. (2008) Beta-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infections Immunology, 76(6), 2802–2807. doi: 10.1128/IAI.00051-08.

Corrêa, R. O., Vieira, A., Sernaglia, E. M., Lancellotti, M., Vieira, A. T., Avila-Campos, M. J., et al. (2017) Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cellular Microbiology, 19(7), e12720. doi: 10.1111/cmi.12720.

Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004) Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532–1535. doi: 10.1126/science.1092385.

Ibarra, J. A., & Steele-Mortimer, O. (2009) Salmonella – the ultimate insider Salmonella virulence factors that modulate intracellular survival. Cellular Microbiology, 11(11), 1579–1586. doi: 10.1111/j.1462-5822.2009.01368.x.

Pacello, F., Ceci, P., Ammendola, S., Pasquali, P., Chiancone, E., & Battistoni, A. (2008) Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species. Biochimica et Biophysica Acta, 1780(2), 226–232. doi: 10.1016/j.bbagen.2007.12.001.




ПАТОЛОГІЯ   Лицензия Creative Commons
Запорізький державний медичний університет