Genetic predictors of development risk of combined caries and chronic catarrhal gingivitis course in children

Authors

  • I. O. Trubka Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine,
  • Z. I. Rossokha State Institution “Reference-Centre for molecular diagnostic of Public Health Ministry of Ukraine”, Kyiv, Ukraine,
  • S. P. Kyriachenko State Institution “Reference-Centre for molecular diagnostic of Public Health Ministry of Ukraine”, Kyiv,
  • N. O. Savychuk Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine,
  • N. G. Gorovenko Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine,

DOI:

https://doi.org/10.14739/2310-1237.2018.2.141341

Keywords:

dental caries, gingivitis, polymorphism genetic, child

Abstract

The purpose of this work was to determine the role of the genetic component in the development of the combined course of caries and gingivitis in children.

Materials and methods: The study involved 49 schoolchildren aged 7–15 years. Dental examination was carried out according to the generally accepted method. The children were divided according to the carious process activity into two groups: 0–4 (compensated caries-comparison group) and 5–8 (subcompensated caries – main group). Chronic generalized catarrhal gingivitis (СGCG) was detected in these groups with frequency: 8 (29.62 %) of 27 patients and 15 (68.18 %) of 22 patients, respectively. Biochemical analysis of the oral fluid parameters, which included an assessment of calcium, phosphorus content, the activity of acid and alkaline phosphatases, malondialdehyde (MDA), catalase, was carried out for children. Molecular genetic research was based on the genomic DNA isolation from the buccal epithelium. To determine the polymorphic variants of GSTT1, GSTM1 genes the method of multiplex polymerase chain reaction (PCR) was used and for the IL-1β (C3953T, rs1143634) and MMP13 (A77G, rs2252070) gene s– PCR followed by restriction fragment length polymorphism analysis.

Results. The development chance of caries in children was associated with the GSTM1 gene deletion polymorphism in combination with the 3953CT polymorphic variant in the IL-1β gene. It was shown, that the development of caries was associated with СGCG, and this combined dental pathology was more reliably detected in patients with 3953СT and 3953TT genotypes in the IL-1β gene. Significantly increased index of malonic dialdehyde and decreased catalase activity in the presence of 3953СT and 3953TT polymorphic variants in the IL-1β gene are determined.

Conclusions. Genetic predictors of increased development chance of combined dental pathology – subcompensated caries and СGCG, pathogenetically combined with increased activity and intensity of periodontal tissue damage among children, were revealed.

References

Khomenko, L. O., Ostapko, O. I., & Duda, O. V. (2011) Ekolohichni aspekty stomatolohichnyh zakhvoriuvan u ditei [Ecological aspects of stomatological deseases in children]. Klinichna stomatolohiia, 1–2, 53–63.[in Ukrainian].

Popovych, Z. B., Kindrat, G. V., & Trushyk, G. O. (2010) Poshyrenist zakhvoriuvan parodontu u ditei, yaki prozhyvaiut na ekolohichnozabrudnenykh terytoriiah [The prevalence of periodontal diseases in children living in environmentally polluted territories]. Visnyk stomatolohii, 2, 32–33. [in Ukrainian].

Savichuk, N., & Marchenko, O. (2015) Disbioz i vospalenie v kompleksnoj terapii khronicheskogo generalizovannogo kataral'nogo gingivita u detej shkol'nogo vozrasta [Dysbiosis and inflammation in the treatment of chronic generalized catarrhal gingivitis among school-aged children]. Sovremennaya stomatologiya, 3(77), 46–50. [in Russian].

Shaffer, J., Wang, X., Feingold, E., Lee, M., Begum, F., Weeks, D. E., et al. (2011). Genome-wide Association Scan for Childhood Caries Implicates Novel Genes. Journal of Dental Research, 90(12), 1457-1462.doi: 10.1177/0022034511422910.

Peneş, N., Weber, B., & Păun, S. (2017) Role of genetic polymorphism in nutritional supplementation therapy in personalized medicine. Rom J MorpholEmbryol, 58(1), 53–58.

Piekoszewska-Ziętek, P., Turska-Szybka, A., & Olczak-Kowalczyk, D. (2017). Single Nucleotide Polymorphism in the Aetiology of Caries: Systematic Literature Review. CariesResearch, 51(4), 425–435. doi: 10.1159/000476075.

Goryachkovskij, A. M. (2005). Klinicheskaya biokhimiya v laboratornoj diagnostike [Clinical biochemistry in laboratory diagnostics]. Odesa: E'kologiya. [in Russian].

Tannure, P., Küchler, E., Falagan-Lotsch, P., Amorim, L., RaggioLuiz, R., & Granjeiro, J. (2012). MMP13 Polymorphism Decreases Risk for Dental Caries. Caries Research, 46(4), 401–407.doi: 10.1159/000339379.

Divaris, K. (2017). Precision Dentistry in Early Childhood The Central Role of Genomics. Dent Clin N Am, 61(3), 619–625. doi: 10.1016/j.cden.2017.02.008.

Yildiz, G., Ermis1, R. B., Calapoglu, N. S., Celik, E. U., & Türel, G. Y. (2016) Gene-environment interactions in the Etiology of Dental Caries. Journal of Dental Research, 95(1), 74–79. doi: 10.1177/0022034515605281.

Antunes, L. A. A., Machado, C. M. C., Couto, A. C. K., Lopes, L. B., Sena, F. C., Abreu, F. V., et al. (2017) A Polymorphism in the MTRR Gene Is Associated with Early Childhood Caries and Underweight. Caries Res, 51(2), 102–108. doi: 10.1159/000451037.

Küchler, E. C., Pecharki, G. D., Castro, M. L., Ramos,J., Barbosa, Jr. F., Brancher, J.A., et al. (2017) Genes Involved in the Enamel Development Are Associated with Calcium and Phosphorus Level in Saliva. Caries Res, 51(3), 225–230 doi: 10.1159/000450764.

Piekoszewska-Ziętek, Р., Turska-Szybka, A., & Olczak-Kowalczyk, D. (2017) Single Nucleotide Polymorphism in the Aetiology of Caries: Systematic Literature Review. Caries Res, 51(4), 425–435. doi: 10.1159/000476075.

Opal, S., Garg, S., Jain, J., & Walia, I. (2015) Genetic factors affecting dental caries risk. Aust Dent J, 60(1), 2–11. doi: 10.1111/adj.12262.

Wang, X., Willing, M. C., Marazita, M. L., Wendell, S., Warren, J. J., Broffitt, B., et al. (2012) Genetic and environmental factors associated with dental caries in children: the Iowa Fluoride Study. Caries Res, 46(3), 177–184. doi: 10.1159/000337282.

Spinei, A., Gavriliuc, L., & Spinei, Iu. (2015) State of antioxidant system glutathione – glutathione S-transferase in deep fluoridation of tooth enamel in children with high risk of dental caries. Curierul medical, 58(3), 3–5.

Ahmadi-Motamayel, F., Goodarzi, M. T, Hendi, S. S., Kasraei, S., & Moghimbeigi, A. (2013) Total antioxidant capacity of saliva and dental caries. Med Oral Patol Oral Cir Bucal, 18(4), 553–556. doi: 10.4317/medoral.18762.

Karimbux, N. Y., & Saraiya, V. M. (2012). Interleukin-1 Gene Polymorphisms and Chronic Periodontitis in Adult Whites: ASystematicReviewandMeta-Analysis. J. Periodontology, 83(11), 1407–1419. doi: 10.1902/jop.2012.110655.

Zhan, Y., Zhang, R., Lv, H., Song, X., Xu, X., Chai, L., et al. (2014) Prioritization of Candidate Genes for Periodontitis Using Multiple Computational Tools. J Periodontology, 85(8), 1059–1069. doi: 10.1902/jop.2014.130523.

Gasyuk, N. V., Yeroshenko, G. A., & Paliy, E. V. (2013) Suchasni uiavlennia pro etiolohiiu ta patohenez khvorob parodontu [Modern idea about etiology and pathogenesis of paradontal tissues’ diseases]. Svit medytsyny ta biolohii, 2(38), 207–211. [in Ukrainian].

McDevitt, M. J., Wang, H.-Y., Knobelman, C., Newman, M. G., di Giovine, F. S., Timms, J., et al. (2000) Interleukin-1 Genetic Association With Periodontitis in Clinical Practice. Journal of Periodontology, 71(2), 156–163. doi: 10.1902/jop.2000.71.2.156.

Jain, A., & Bahuguna, R. (2015) Role of matrix metalloproteinase in dental caries, pulp and periapicalinflammation: an overview. Journal of oral biology and craniofacial research, 5(3), 212–218. doi: 10.1016/j.jobcr.2015.06.015.

Dabra, S., & Singh, P. (2012)Evaluating the levels of salivary alkaline and acid phosphatase activities as biochemical markers for periodontal disease: A case series. Dent Res J (Isfahan), 9(1), 41–45. doi: 10.4103/1735-3327.92942.

Sirak, S. V., Sirak, A. G., & Bykov, I. M. (2013) Dinamika biokhimicheskikh pokazatelej rotovoj zhidkosti u detej i podrostkov pri ispol'zovanii razrabotannogo zubnogo e'liksira [Dynamics of biochemical parameters oral liquid of children and youth from the use of the newly developed mouth wash]. Stomatologiya detskogo vozrasta i profilaktika, 12(47), 61–65. [in Russian].

Tóthová, L., Kamodyová, N., Červenka, T., & Celec, P. (2015) Salivary markers of oxidative stress in oral diseases Front. Cell. Infect. Microbiol, 5, 73. doi: 10.3389/fcimb.2015.00073.

How to Cite

1.
Trubka IO, Rossokha ZI, Kyriachenko SP, Savychuk NO, Gorovenko NG. Genetic predictors of development risk of combined caries and chronic catarrhal gingivitis course in children. Pathologia [Internet]. 2018Sep.12 [cited 2024Dec.24];(2). Available from: http://pat.zsmu.edu.ua/article/view/141341

Issue

Section

Original research