Cancer stem cells and mesenchymal stem cells in pancreatic ductal adenocarcinoma
DOI:
https://doi.org/10.14739/2310-1237.2019.1.166476Keywords:
pancreatic ductal adenocarcinoma, pancreatic neoplasms, neoplastic stem cellsAbstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive types of cancer and chemotherapy resistant cancer, in the development of which poorly studied cancer stem cells (CSC) and mesenchymal stem cells (MSC) are of great importance. The purpose of the work is the analysis of the current literature data on the role of stem cells in the progression of PDAC. The stem cell pool of PDAC is heterogenic, consists of CSC and MSC, which form stem cell niches in the tumor. Three signaling molecular pathways play an important role in self-renewal and differentiation of pancreatic CSCs: Wnt, Sonic hedgehog and Notch. RSCs have the ability for self-renewal, for symmetric and asymmetric division, for partial differentiation, as well as for existence, self-renewal and differentiation outside the primary tumor. CSCs ensure growth and progression of the tumor, invasiveness and metastasis of PDAC, and also support its chemoresistance. MSCs of bone marrow origin in the pancreas are not involved in epithelial carcinogenesis, but when interacting with other cells of the microenvironment, exert a stimulating and inhibiting influence on the tumor. MSCs can act as promoters of oncogenesis through transformation into cancer-associated fibroblasts, local immunosuppression, stimulation of tumor neoangiogenesis, blockade of apoptosis of cancer cells, participation in the epithelial-mesenchymal transition and metastasis. MSCs can also act as suppressors of oncogenesis by stimulating the immuno-cellular infiltration of tumor tissue, suppressing the function of the AKT and Wnt signaling pathways, inducing cell cycle arrest and triggering cancer cell apoptosis, and suppressing tumor neoangiogenesis.Conclusion. CSCs play a key role in the implementation of the aggressive properties of PDAC; MSCs have an effect on both cancer stem cells and the actual cancer cells of PDAC, exerting both stimulating and inhibiting influence on the tumor. The available data on the role of MSCs in the progression of PDAC are still heterogeneous, which determines the relevance of further study of the issue.
References
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R., Torre, L., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal For Clinicians, 68(6), 394–424. doi: 10.3322/caac.21492
(2018) American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society.
Melzer, C., von der Ohe, J., Lehnert, H., Ungefroren, H., & Hass, R. (2017). Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Molecular Cancer, 16(1). doi: 10.1186/s12943-017-0595-x
Plaks, V., Kong, N., & Werb, Z. (2015). The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells? Cell Stem Cell, 16(3), 225–238. doi: 10.1016/j.stem.2015.02.015
Gore, J., & Korc, M. (2014). Pancreatic Cancer Stroma: Friend or Foe? Cancer Cell, 25(6), 711–712. doi: 10.1016/j.ccr.2014.05.026
Papaccio, F., Paino, F., Regad, T., Papaccio, G., Desiderio, V., & Tirino, V. (2017). Concise Review: Cancer Cells, Cancer Stem Cells, and Mesenchymal Stem Cells: Influence in Cancer Development. STEM CELLS Translational Medicine, 6(12), 2115–2125. doi: 10.1002/sctm.17-0138
Lee, H., & Hong, I. (2017). Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Science, 108(10), 1939–1946. doi: 10.1111/cas.13334
Rhee, K., Lee, J., & Eom, Y. (2015). Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. International Journal of Molecular Sciences, 16(12), 30015–30033. doi: 10.3390/ijms161226215
Zhao, Y. D., Zhang, Q. B., Chen, H., Fei, X. F., Shen, Y. T., Ji, X. Y.., et al. (2017). Research on human glioma stem cells in China. Neural Regeneration Research, 12(11), 1918–1926. doi: 10.4103/1673-5374.219055
Xu, S., De Veirman, K., De Becker, A., Vanderkerken, K., & Van Riet, I. (2018). Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia, 32(7), 1500–1514. doi: 10.1038/s41375-018-0061-9
Krawczyk, N., Meier-Stiegen, F., Banys, M., Neubauer, H., Ruckhaeberle, E., & Fehm, T. (2014). Expression of Stem Cell and Epithelial-Mesenchymal Transition Markers in Circulating Tumor Cells of Breast Cancer Patients. Biomed Research International, 2014, 1–11. doi: 10.1155/2014/415721
Castelli, G., Pelosi, E., & Testa, U. (2017). Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers. Basel, 2017, 20(9), 111–125. doi: 10.3390/cancers9090127
Graham, N., & Qian, B. Z. (2018). Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. International Journal of Molecular Sciences, 2018, 19(4). E1121. doi: 10.3390/ijms19041121
Valle, S., Martin-Hijano, L., Alcalá, S., Alonso-Nocelo, M., & Sainz Jr., B. (2018). The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer. Cancers, 10(2), 33. doi: 10.3390/cancers10020033
Vaz, A., Ponnusamy, M., Seshacharyulu, P., & Batra, S. (2014). A concise review on the current understanding of pancreatic cancer stem cells. Journal Of Cancer Stem Cell Research, 2(4), 1. doi: 10.14343/jcscr.2014.2e1004
Rao, C., & Mohammed, A. (2015). New insights into pancreatic cancer stem cells. World J. Stem Cells, 7(3), 547–555. doi: 10.4252/wjsc.v7.i3.547
Li, X., Zhao, H., Gu, J., & Zheng, L. (2015). Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. International Journal of Clinical and Experimental Pathology, 8(10), 12084–12092. doi: 10.1155%2F2017%2F3276806
Ohtsubo, I., Ajiki, T., Hori Y., & Murakami, S. (2012). Distinctive expression of CD133 between intraductal papillary neoplasms of the bile duct and bile duct adenocarcinomas. Hepatology Research, 42(6), 574–582. doi: 10.1111/j.1872-034X.2011.00954.x
Wang, F., Ma, L., Zhang, Z., Liu, X., Gao, H., Zhuang, Y., et al. (2016). Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells. Journal of Cancer, 7(4), 408–417. doi: 10.7150/jca.13305
Abdullah, L. N., & Chow E., K-H. (2013). Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med., 2(1), 3. doi: 10.1186/2001-1326-2-3
Schober, M., Jesenofsky, R., Faissner, R., Weidenauer, C., Hagmann, W., Michl, P., et al. (2014). Desmoplasia and Chemoresistance in Pancreatic Cancer. Cancers (Basel), 6(4), 2137–2154. doi: 10.3390/cancers6042137
Reichert, M., Blume, K., Kleger, A., Hartmann, D., & von Figura, G. (2016). Developmental Pathways Direct Pancreatic Cancer Initiation from Its Cellular Origin. Stem Cells International, 2016, 1–8. doi: 10.1155/2016/9298535
Scarlett, C. (2013). Contribution of bone marrow derived cells to the pancreatic tumor microenvironment. Frontiers In Physiology, 4. doi: 10.3389/fphys.2013.00056
Haqq, J., Howells, L., Garcea, G., Metcalfe, M., Steward, W., & Dennison, A. (2014). Pancreatic stellate cells and pancreas cancer: Current perspectives and future strategies. European Journal of Cancer, 50(15), 2570–2582. doi: 10.1016/j.ejca.2014.06.021
Chowdhury, R., Webber, J., Gurney, M., Mason, M., Tabi, Z., & Clayton, A. (2015). Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget, 6(2). doi: 10.18632/oncotarget.2711
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. doi: 10.1080/14653240600855905
Bianco, P. (2014). “Mesenchymal” Stem Cells. Annual Review of Cell And Developmental Biology, 30(1), 677–704. doi: 10.1146/annurev-cellbio-100913-013132
Hill, B. S., Pelagalli, A., Passaro, N. & Zannetti A. (2017). Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget, 8(42), 73296–73311. doi: 10.18632/oncotarget.20265
Mathew, E., Brannon, A., Del Vecchio, A., Garcia, P., Penny, M., Kane, K., et al. (2016). Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages. Neoplasia, 18(3), 142–151. doi: 10.1016/j.neo.2016.01.005
Kim, J., & Bae, J.-S. (2016). Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators of Inflammation, 2016, 6058147. doi: 10.1155/2016/6058147.
Netea-Maier, R. T., Smit, J. W., & Netea, M. G. (2018). Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Letters, 28, 102–109. doi: 10.1016/j.canlet.2017.10.037
Xu, J., Gong, T., Heng, B. C., & Zhang, C. F. (2017). A systematic review: differentiation of stem cells into functional pericytes. FASEB Journal, 31(5), 1775–1786. doi: 10.1096/fj.201600951RRR
Gu, W., Hong, X., Potter, C., Qu, A., & Xu, Q. (2017). Mesenchymal stem cells and vascular regeneration. Microcirculation, 24(1), e12324. doi: 10.1111/micc.12324
Wang, M., & Zou, Z. (2014). Multiple mechanisms of SDF-1 promoting VEGF-induced endothelial differentiation of mesenchymal stem cells. International Journal of Cardiology, 177(3), 1098–1099. doi: 10.1016/j.ijcard.2014.09.198
Ge, Q., Zhang, H., Hou, J., Wan, L., Cheng, W., Wang, X., et al. (2017). VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Molecular Medicine Reports, 17(1), 1667–1675.doi: 10.3892/mmr.2017.8059
Schito, L., & Semenza, G. L. (2016). Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer, 2(12), P. 758–770. doi: 10.1016/j.trecan.2016.10.016
Gilkes, D. M., Semenza, G. L., & Wirtz, D. (2014). Hypoxia and the extracellular matrix: drivers of tumor metastasis. Nature Reviews Cancer, 14(6), 430–439. doi: 10.1038/nrc3726
Zhang, A., Ficklscherer, A., Gülecyüz, M., Paulus, A., Niethammer, T., Jansson, V., & Müller, P. (2017). Cell Toxicity in Fibroblasts, Tenocytes, and Human Mesenchymal Stem Cells—A Comparison of Necrosis and Apoptosis-Inducing Ability in Ropivacaine, Bupivacaine, and Triamcinolone. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 33(4), 840–848. doi: 10.1016/j.arthro.2016.10.026
Mizukami, Y. (2012). Bone marrow-derived proangiogenic cells in pancreatic cancer. Journal of Gastroenterology and Hepatology, 27(2), 23–26. doi: 10.1111/j.1440-1746.2011.07012.x
Lamouille, S., Xu, J., & Derynck R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178–196. doi: 10.1038/nrm3758
Lazennec, G., & Lam, P. Y. (2016). Recent discoveries concerning the tumor – mesenchymal stem cell interactions. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1866(2), 290–299. doi: 10.1016/j.bbcan.2016.10.004
Berger, L., Shamai, Y., Skorecki, K. L., & Tzukerman, M. (2016). Tumor specific recruitment and reprogramming of mesenchymal stem cells in tumorigenesis. Stem Cells, 34(4), 1011–1026. doi: 10.1002/stem.2269
Wang, S., Huang, S., & Sun Y. L. (2017). Epithelial-Mesenchymal Transition in Pancreatic Cancer: A Review. BioMed Research International, 1025–1033. doi: 10.1155/2017/2646148
Galland, S., Vuille, J., Martin, P., Letovanec, I., Caignard, A., Fregni, G., & Stamenkovic, I. (2017). Tumor-Derived Mesenchymal Stem Cells Use Distinct Mechanisms to Block the Activity of Natural Killer Cell Subsets. Cell Reports, 20(12), 2891–2905. doi: 10.1016/j.celrep.2017.08.089
Zhang, S., Chuah, S., Lai, R., Hui, J., Lim, S., & Toh, W. (2018). MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 156, 16–27. doi: 10.1016/j.biomaterials.2017.11.028
Wei, X., Liu, C., Wang, H., Wang, L., Xiao, F., Guo, Z., & Zhang, H. (2016). Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells. PLOS ONE, 11(1), e0147360. doi: 10.1371/journal.pone.0147360
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (SeeThe Effect of Open Access).