Sirtuins and neuronal DNA damage under experimental chronic cerebral hypoperfusion

Authors

  • O. Yu. Harmatina Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv,
  • Т. Yu. Voznesenska Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv,
  • N. H. Hrushka Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv,
  • О. А. Kondratska Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv,
  • А. H. Portnychenko Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv,

DOI:

https://doi.org/10.14739/2310-1237.2019.2.177121

Keywords:

cerebrovascular perfusion, stenosis common carotid artery, sirtuins

Abstract

Chronic brain hypoperfusion (ChCH) is a risk factor for central nervous system (CNS) diseases, such as chronic brain ischemia, degenerative diseases, and others, in this connection, the study of its pathophysiological mechanisms is an actual problem.

Objective. To investigate the relationship between SIRT1/SIRT3 expression and activity and damage of neuronal DNA in conditions of chronic cerebral hypoperfusion in mice.

Маterials and methods. The experiments were carried out on male C57Bl mice (6 weeks old, weight 18–20 g), which underwent occlusion of left common carotid artery to model ChCH. On the background of ChCH nicotinamide (NAM, 200 mg/kg, 10 d, i.p.) and resveratrol (RV, 10 mg/kg, 10 d, i.p.) were used. All manipulations were carried out in anesthetized with ketamine (60 mg/kg, i.p.) mice. In 8 weeks, in mice brain tissues the features of neuronal DNA damage were studied by DNA comet assay and SIRT1/SIRT3 gene expression levels by real-time RT-PCR.

Results. ChCH modeling was accompanied on the unilateral side by an increase of DNA damage (comets within classes 3 and 4) index of neurons by 6.9 times, and by a decrease of SIRT1 and SIRT3 gene expression by 9.3 and 20.2 times, respectively, compared to control (P < 0.05). Using of NAM and RV treatment resulted in reduction of DNA damage index by 89.6 % and by 92.4 %, respectively, compared to control (P < 0.05), and in the increase of the levels of SIRT1 by 1.7 and 3.5 times, and SIRT3 – by 2.9 and 5.2 times, respectively, in comparison with the ChCH group (P < 0.05).

Conclusion. Taken together, these data indicate that modification of SIRT1 activity caused positive effect on ChCH-induced brain injury by attenuating DNA breaks, which was accompanied with up-regulation of SIRT-mediated regulatory pathways.

 

References

Daulatzai, M. A. (2017). Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J. Neurosci. Res., 95(4), 943–972. doi: 10.1002/jnr.23777

Li, P., Stetler, R. A., Leak, R. K., Shi, Y., Li, Y., Yu, W., et al. (2017). Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology, 134 (Pt B), 208–217. doi: 10.1016/j.neuropharm.2017.11.011

Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., & Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell., 16(10), 4623–35. doi: 10.1091/mbc.E05-01-0033

Afanasieva, K., Zazhytska, M., & Sivolob, A. (2010). Kinetics of comet formation in single-cell gel electrophoresis: Loops and fragments. Electrophoresis., 31(3), 512–519. doi: 10.1002/elps.200900421

Collins, A. R. (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol., 26(3), 249–261. doi: 10.1385/MB:26:3:249

Sorochinska J., & Mikhailenko V. (2008) Application of the comet assay for the DNA damage assessment caused by different inveronmental agents. Oncology, 10(3), 303–308.

Lim, J. H., Lee, Y. M., Chun, Y. S., Chen, J., Kim, J. E., & Park, J. W. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell., 38(6), 864–878. doi: 10.1016/j.molcel.2010.05.023

Wang, X-Q., Shao, Y., Ma, C-Y., Chen, W., Sun, L., Liu, W., et al. (2014). Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. J. Cell. Mol. Med., 18(11), 2298–2310. doi: 10.1111/jcmm.12395

Naia, L., Rosenstock, T. R., Oliveira, A. M., Oliveira-Sousa, S. I., Caldeira, G. L., Carmo, C., et al. (2017). Comparative Mitochondrial-Based Protective Effects of Resveratrol and Nicotinamide in Huntington's Disease Models. Mol. Neurobiol., 54(7), 5385–5399. doi: 10.1007/s12035-016-0048-3

Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., et al. (2010). Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE, 5(7), e11707. doi: 10.1371/journal.pone.0011707

Das, S., Mitrovsky, G., Vasanthi, H. R., & Das, D. K. (2014). Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid. Med. Cell. Longev., 2014, 345105. doi: 10.1155/2014/345105

Koo, J. H., & Cho, J. Y. (2017). Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson's Disease. Neurotox. Res., 32(3), 473–486. doi: 10.1007/s12640-017-9770-5

Jęśko, H., & Strosznajder, R. P. (2016). Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathol., 54(3), 212–233.

de Queiroz, K. B., Dos Santos Fontes Pereira, T., Araújo, M. S. S., Gomez, R. S., & Coimbra, R. S. (2018). Resveratrol Acts Anti-Inflammatory and Neuroprotective in an Infant Rat Model of Pneumococcal Meningitis by Modulating the Hippocampal miRNome. Mol Neurobiol., 55(12), 8869–8884. doi: 10.1007/s12035-018-1037-5

Jia, J. Y., Tan, Z. G., Liu, M., & Jiang, Y. G. (2017). Apurinic/apyrimidinic endonuclease 1 (APE1) contributes to resveratrol induced neuroprotection against oxygen glucose deprivation and re oxygenation injury in HT22 cells: Involvement in reducing oxidative DNA damage. Mol. Med. Rep., 16(6), 9786–9794. doi: 10.3892/mmr.2017.7799

Shen, J., Xu, L., Qu, C., Sun, H., & Zhang, J. (2018). Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav. Brain Res., 349, 1–7. doi: 10.1016 / j.bbr.2018.04.050

Yang, J. L., Lin, Y. T., Chuang, P. C., Bohr, V. A., & Mattson, M. P. (2014). BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular. Med. Mar., 16(1), 161–174. doi: 10.1007/s12017-013-8270-x

Chong, Z. Z., Lin, S. H., & Maiese, K. (2002). Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury. J, Vasc. Res., 39(2), 131–147. doi: 10.1159/000057762

How to Cite

1.
Harmatina OY, Voznesenska ТY, Hrushka NH, Kondratska ОА, Portnychenko АH. Sirtuins and neuronal DNA damage under experimental chronic cerebral hypoperfusion. Pathologia [Internet]. 2019Sep.2 [cited 2025Jan.8];(2). Available from: http://pat.zsmu.edu.ua/article/view/177121

Issue

Section

Original research