Inhibition of poly(ADP-ribose)polymerase contributes to the reduction of oxidative stress in murine liver under the conditions of experimental endotoxemia
DOI:
https://doi.org/10.14739/2310-1237.2019.3.188796Keywords:
experimental endotoxemia, liver, oxidative stress, poly(ADP-ribose)polymeraseAbstract
The aim of the work is to investigate the effect of the enzyme poly(ADP-ribose)polymerase 1 (PARP-1) inhibitor, 4-hydroxyquinazoline (4-HQN), on the state of the pro- and antioxidant system of murine liver, under the conditions of lipopolysaccharide (LPS) induced inflammation.
Materials and methods. Systemic endotoxemia was induced by the administration of LPS (E. coli 0111:B4) at a dose of 3 mg/kg intraperitoneally (IP). A solution of 4-HQN was applied IP at a dose of 100 mg/kg an hour before LPS administration. The processes of lipid peroxidation (LPO) have been evaluated by the content of the end products of LPO in liver tissue by their reaction with thiobarbituric acid (TBA). The concentration of reduced glutathione (GSH) in liver was determined by Ellman's spectrophotometric method. The level of ceruloplasmin (CP) in serum was measured by colorimetric method of Ravin using a test kit (JSC Reagent, Ukraine) in accordance with the manufacturer’s instructions and expressed in mg/l.
Results. It was established that 24 hours after LPS administration the content of TBA-reactive substances (TBARS) in liver tissue significantly increased, that indicates intensification of POL. The level of GSH and the activity of CP in serum significantly decreased under the conditions of LPS action. The use of the inhibitor PARP-1, 4-HQN, during endotoxemia resulted in 1.7-fold decrease in the amount of TBARS in liver tissue (P < 0.05 compared with LPS) and increased significantly the GSH content (2.9-fold, P < 0.05) and the CP (1.2-fold, P < 0.05).
Conclusions. The data obtained using murine model of endotoxemia indicate the involvement of PARP-1 in intensification of POL. Pharmacological inhibition of this enzyme contributed to the reduction of oxidative stress in murine liver and improved the state of antioxidant protection of the body, that is, it had a pronounced protective effect during endotoxemia.
References
Sinha, N., & Dabla, P. K. (2015). Oxidative Stress and Antioxidants in Hypertension-A Current Review. Current Hypertension Reviews, 11(2), 132-142. https://doi.org/10.2174/1573402111666150529130922
Reznikov, О. H., Polumbryk, О. М., Balion, Y. H., & Polumbryk, M. О. (2014). Pro- ta antyoksydantna systemy i patolohichni protsesy v orhanizmi liudyny [Pro- and antioxidant systems and pathological processes in humans]. Visnyk Natsionalnoi akademii nauk Ukrainy, 10, 17-29. [in Ukrainian].
Shah, S. A., Khan, M., Jo, M. H., Jo, M. G., Amin, F. U., & Kim, M. O. (2017). Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. Cns Neuroscience & Therapeutics, 23(1), 33-44. https://doi.org/10.1111/cns.12588
Proniewski, B., Kij, A., Sitek, B., Kelley, E. E., & Chlopicki, S. (2019). Multiorgan Development of Oxidative and Nitrosative Stress in LPS-Induced Endotoxemia in C57Bl/6 Mice: DHE-Based In Vivo Approach. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2019/7838406
Shepel, E., Grushka, N., Makogon, N., Sribna, V., Pavlovych, S., & Yanchii, R. (2018). Changes in DNA integrity and gene expression in ovarian follicular cells of lipopolysaccharide-treated female mice. Pharmacological Reports, 70(6), 1146-1149. https://doi.org/10.1016/j.pharep.2018.06.005
Kondratyk, K. O., Bоdnar, P. M., Lysianuy, N. I., Belska, L. M., Lysiana, Т. О., & Ponomariova, I. G. Osoblyvosti dysbiotychnykh porushen u patsiientiv z tsukrovym diabetom 2-ho typu ta nealkoholnoiu zhyrovoiu khvoroboiu pechinky [Features of dysbiotic disturbances in patients with type 2 diabetes and nonalcoholic fatty liver disease]. Simeina Medytsyna, 3, 181-185. [in Ukrainian].
Varma, M. C., Kusminski, C. M., Azharian, S., Gilardini, L., Kumar, S., Invitti, C., & McTernan, P. G. (2016). Metabolic endotoxaemia in childhood obesity. BMC Obesity, 3(3). https://doi.org/ 10.1186/s40608-016-0083-7.
Sakaguchi, S., & Furusawa, S. (2006). Oxidative stress and septic shock: metabolic aspects of oxygen-derived free radicals generated in the liver during endotoxemia. Fems Immunology and Medical Microbiology, 47(2), 167-177. https://doi.org/10.1111/j.1574-695X.2006.00072.x
Babanin, A. A., Zaharova, A. N., Tovazhnyanskaya, E. L., Malev, A. L., Kaliberdenko, V. B., & Radzivil, P. N. (2012). Biochemical markers of the oxidising stress at an endotoxic lesion of a liver. Eksperymentalna i klinichna medytsyna, 1, 44-47. [in Russian].
Drel, V. R., Shymanskyy, I. O., Sybirna, N. O., & Veliky, M. M. (2011). Role of parp and protein poly-ADP-ribosylation process in regulation of cell functions. Ukrain'Skyi Biokhimichnyi Zhurnal, 83(6), 5-34.
Bai, P. (2015). Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Molecular Cell, 58(6), 947-958. https://doi.org/10.1016/j.molcel.2015.01.034
Kapoor, K., Singla, E., Sahu, B., & Naura, A. S. (2015). PARP inhibitor, olaparib ameliorates acute lung and kidney injury upon intratracheal administration of LPS in mice. Molecular and Cellular Biochemistry, 400(1-2), 153-162. https://doi.org/10.1007/s11010-014-2271-4
Sriram, C. S., Jangra, A., Gurjar, S. S., Mohan, P., & Bezbaruah, B. K. (2016). Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1. Physiology & Behavior, 154, 135-144. https://doi.org/10.1016/j.physbeh.2015.10.029
Mukhopadhyay, P., Horvath, B., Rajesh, M., Varga, Z. V., Gariani, K., Ryu, D., . . . Pacher, P. (2017). PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. Journal of Hepatology, 66(3), 589-600. https://doi.org/10.1016/j.jhep.2016.10.023
Kamyshnikov, V. S. (2009). (3rd ed.). Cpravochnik po kliniko-biokhimicheskim issledovaniyam i laboratornoi diagnostike [Handbook of clinical and biochemical studies and laboratory diagnostics]. Moscow: MEDpress-Inform.
Giustarini, D., Fanti, P., Matteucci, E., & Rossi, R. (2014). Micro-method for the determination of glutathione in human blood. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 964, 191-194. https://doi.org/10.1016/j.jchromb.2014.02.018
Bielenichev, I. F., Levytskyi, E. L. Hubskyi, Yu. I., Kovalenko, S. I., & Marchenko, O. M. (2002). Antyoksydantna systema zakhystu orhanizmu (ohliad) [Antioxidant system of body protection (review)]. Sovremennye problemy toksikologii, 3, 24–29. [in Ukrainian].
Sribna, V. O., Grushka, N. G., Martynova, T. V., Makogon, N. V. (2016). Funktsionalna aktyvnist klityn urodzhenoho imunitetu pry inhibuvanni poli(adf-rybozo)polimerazy za umov eksperymentalnoi imunokompleksnoi patolohii [Functional activity of innate immunity cells under poly(adp-ribose) polymerase inhibition in conditions of experimental immune complex-mediated pathology]. Eksperymentalna i klinichna medytsyna, 2 (71). 189-193. [in Ukrainian].
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (SeeThe Effect of Open Access).