Inhibition of poly(ADP-ribose)polymerase contributes to the reduction of oxidative stress in murine liver under the conditions of experimental endotoxemia

Authors

  • N. H. Hrushka O. O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv,
  • S. I. Pavlovych O. O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv,
  • O. A. Kondratska O. O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv,
  • N. O. Pilkevych O. O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv,
  • R. I. Yanchii O. O. Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv,

DOI:

https://doi.org/10.14739/2310-1237.2019.3.188796

Keywords:

experimental endotoxemia, liver, oxidative stress, poly(ADP-ribose)polymerase

Abstract

 

The aim of the work is to investigate the effect of the enzyme poly(ADP-ribose)polymerase 1 (PARP-1) inhibitor, 4-hydroxyquinazoline (4-HQN), on the state of the pro- and antioxidant system of murine liver, under the conditions of lipopolysaccharide (LPS) induced inflammation.

Materials and methods. Systemic endotoxemia was induced by the administration of LPS (E. coli 0111:B4) at a dose of 3 mg/kg intraperitoneally (IP). A solution of 4-HQN was applied IP at a dose of 100 mg/kg an hour before LPS administration. The processes of lipid peroxidation (LPO) have been evaluated by the content of the end products of LPO in liver tissue by their reaction with thiobarbituric acid (TBA). The concentration of reduced glutathione (GSH) in liver was determined by Ellman's spectrophotometric method. The level of ceruloplasmin (CP) in serum was measured by colorimetric method of Ravin using a test kit (JSC Reagent, Ukraine) in accordance with the manufacturer’s instructions and expressed in mg/l.

Results. It was established that 24 hours after LPS administration the content of TBA-reactive substances (TBARS) in liver tissue significantly increased, that indicates intensification of POL. The level of GSH and the activity of CP in serum significantly decreased under the conditions of LPS action. The use of the inhibitor PARP-1, 4-HQN, during endotoxemia resulted in 1.7-fold decrease in the amount of TBARS in liver tissue (P < 0.05 compared with LPS) and increased significantly the GSH content (2.9-fold, P < 0.05) and the CP (1.2-fold, P < 0.05).

Conclusions. The data obtained using murine model of endotoxemia indicate the involvement of PARP-1 in intensification of POL. Pharmacological inhibition of this enzyme contributed to the reduction of oxidative stress in murine liver and improved the state of antioxidant protection of the body, that is, it had a pronounced protective effect during endotoxemia.

 

References

Sinha, N., & Dabla, P. K. (2015). Oxidative Stress and Antioxidants in Hypertension-A Current Review. Current Hypertension Reviews, 11(2), 132-142. https://doi.org/10.2174/1573402111666150529130922

Reznikov, О. H., Polumbryk, О. М., Balion, Y. H., & Polumbryk, M. О. (2014). Pro- ta antyoksydantna systemy i patolohichni protsesy v orhanizmi liudyny [Pro- and antioxidant systems and pathological processes in humans]. Visnyk Natsionalnoi akademii nauk Ukrainy, 10, 17-29. [in Ukrainian].

Shah, S. A., Khan, M., Jo, M. H., Jo, M. G., Amin, F. U., & Kim, M. O. (2017). Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. Cns Neuroscience & Therapeutics, 23(1), 33-44. https://doi.org/10.1111/cns.12588

Proniewski, B., Kij, A., Sitek, B., Kelley, E. E., & Chlopicki, S. (2019). Multiorgan Development of Oxidative and Nitrosative Stress in LPS-Induced Endotoxemia in C57Bl/6 Mice: DHE-Based In Vivo Approach. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2019/7838406

Shepel, E., Grushka, N., Makogon, N., Sribna, V., Pavlovych, S., & Yanchii, R. (2018). Changes in DNA integrity and gene expression in ovarian follicular cells of lipopolysaccharide-treated female mice. Pharmacological Reports, 70(6), 1146-1149. https://doi.org/10.1016/j.pharep.2018.06.005

Kondratyk, K. O., Bоdnar, P. M., Lysianuy, N. I., Belska, L. M., Lysiana, Т. О., & Ponomariova, I. G. Osoblyvosti dysbiotychnykh porushen u patsiientiv z tsukrovym diabetom 2-ho typu ta nealkoholnoiu zhyrovoiu khvoroboiu pechinky [Features of dysbiotic disturbances in patients with type 2 diabetes and nonalcoholic fatty liver disease]. Simeina Medytsyna, 3, 181-185. [in Ukrainian].

Varma, M. C., Kusminski, C. M., Azharian, S., Gilardini, L., Kumar, S., Invitti, C., & McTernan, P. G. (2016). Metabolic endotoxaemia in childhood obesity. BMC Obesity, 3(3). https://doi.org/ 10.1186/s40608-016-0083-7.

Sakaguchi, S., & Furusawa, S. (2006). Oxidative stress and septic shock: metabolic aspects of oxygen-derived free radicals generated in the liver during endotoxemia. Fems Immunology and Medical Microbiology, 47(2), 167-177. https://doi.org/10.1111/j.1574-695X.2006.00072.x

Babanin, A. A., Zaharova, A. N., Tovazhnyanskaya, E. L., Malev, A. L., Kaliberdenko, V. B., & Radzivil, P. N. (2012). Biochemical markers of the oxidising stress at an endotoxic lesion of a liver. Eksperymentalna i klinichna medytsyna, 1, 44-47. [in Russian].

Drel, V. R., Shymanskyy, I. O., Sybirna, N. O., & Veliky, M. M. (2011). Role of parp and protein poly-ADP-ribosylation process in regulation of cell functions. Ukrain'Skyi Biokhimichnyi Zhurnal, 83(6), 5-34.

Bai, P. (2015). Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Molecular Cell, 58(6), 947-958. https://doi.org/10.1016/j.molcel.2015.01.034

Kapoor, K., Singla, E., Sahu, B., & Naura, A. S. (2015). PARP inhibitor, olaparib ameliorates acute lung and kidney injury upon intratracheal administration of LPS in mice. Molecular and Cellular Biochemistry, 400(1-2), 153-162. https://doi.org/10.1007/s11010-014-2271-4

Sriram, C. S., Jangra, A., Gurjar, S. S., Mohan, P., & Bezbaruah, B. K. (2016). Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1. Physiology & Behavior, 154, 135-144. https://doi.org/10.1016/j.physbeh.2015.10.029

Mukhopadhyay, P., Horvath, B., Rajesh, M., Varga, Z. V., Gariani, K., Ryu, D., . . . Pacher, P. (2017). PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. Journal of Hepatology, 66(3), 589-600. https://doi.org/10.1016/j.jhep.2016.10.023

Kamyshnikov, V. S. (2009). (3rd ed.). Cpravochnik po kliniko-biokhimicheskim issledovaniyam i laboratornoi diagnostike [Handbook of clinical and biochemical studies and laboratory diagnostics]. Moscow: MEDpress-Inform.

Giustarini, D., Fanti, P., Matteucci, E., & Rossi, R. (2014). Micro-method for the determination of glutathione in human blood. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 964, 191-194. https://doi.org/10.1016/j.jchromb.2014.02.018

Bielenichev, I. F., Levytskyi, E. L. Hubskyi, Yu. I., Kovalenko, S. I., & Marchenko, O. M. (2002). Antyoksydantna systema zakhystu orhanizmu (ohliad) [Antioxidant system of body protection (review)]. Sovremennye problemy toksikologii, 3, 24–29. [in Ukrainian].

Sribna, V. O., Grushka, N. G., Martynova, T. V., Makogon, N. V. (2016). Funktsionalna aktyvnist klityn urodzhenoho imunitetu pry inhibuvanni poli(adf-rybozo)polimerazy za umov eksperymentalnoi imunokompleksnoi patolohii [Functional activity of innate immunity cells under poly(adp-ribose) polymerase inhibition in conditions of experimental immune complex-mediated pathology]. Eksperymentalna i klinichna medytsyna, 2 (71). 189-193. [in Ukrainian].

How to Cite

1.
Hrushka NH, Pavlovych SI, Kondratska OA, Pilkevych NO, Yanchii RI. Inhibition of poly(ADP-ribose)polymerase contributes to the reduction of oxidative stress in murine liver under the conditions of experimental endotoxemia. Pathologia [Internet]. 2019Dec.23 [cited 2024Dec.23];(3). Available from: http://pat.zsmu.edu.ua/article/view/188796

Issue

Section

Original research