Peculitaries of carbohydrate metabolism in patients with metabolic syndrome depending on C/Т polymоrphism in the DIO 1 gene

Authors

  • N. O. Abramova HSEI “Bukovinian State Medical University”, Chernivtsi, Ukraine,
  • N. V. Pashkovska HSEI “Bukovinian State Medical University”, Chernivtsi, Ukraine,

DOI:

https://doi.org/10.14739/2310-1237.2019.3.188838

Keywords:

C/T polymorphism in the DIO 1 gene, carbohydrate metabolism, insulin resistance, metabolic syndrome

Abstract

 

According to the WHO, the prevalence of metabolic syndrome (MS) is 20–40 %. Thyroid hormones are involved in the regulation of almost all physiological processes in the body, including carbohydrate metabolism.

The aim of the research was to study the dependence of carbohydrate metabolism on C/T polymorphism in the DIO 1 gene in patients with metabolic syndrome.

Material and methods. The C/T polymorphism in the DIO1 gene was studied in 102 patients and 97 healthy subjects. To assess the dependence of carbohydrate metabolism on the C/T polymorphism in the DIO 1 gene, the following groups has been formed: 19 patients with CC genotype, 69 individuals – with CT and 14 ones – with TT genotypes.

Results. Disorders of distribution of genotype frequencies contributed by the reduction of CC genotype frequency was revealed in the group of enrolled patients comparing to the control group (χ2 = 6.8, P < 0.05), while there was no significant difference between the frequencies of CT and TT genotypes in the main and control groups (χ2 = 2.4, P > 0.05 and χ2 = 1.2, P > 0.05). Taking into account that the difference in genotypes frequencies occurs mainly due to a decrease in the number of patients homozygous for C allele, it can be assumed that the C allele has protective properties against deiodinase 1 activity reduction,  that indicates the assotiation of C/T polymorphism in the DIO1 gene with the development of thyroid hormone disturbances in the patients with metabolic syndrome as compared to the control group.

Elevation of HOMA-IR index was established in patients with TT genotype. Insulin resistance develops in the carriers of T allele, that causes disturbances in carbohydrate metabolism.

Conclusions. Presence of the T allele in genotype is associated with HOMA-IR index elevation as a consequence of the triiodothyronine level reduction and further development of insulin resistance.

 

References

de Jong, F. J., Peeters, R. P., den Heijer, T., van der Deure, W. M., Hofman, A., Uitterlinden, A. G., . . . Breteler, M. M. B. (2007). The association of polymorphisms in the type 1 and 2 deiodinase genes with circulating thyroid hormone parameters and atrophy of the medial temporal lobe. Journal of Clinical Endocrinology & Metabolism, 92(2), 636-640. https://doi.org/10.1210/jc.2006-1331

Flamant, F., Cheng, S. Y., Hollenberg, A. N., Moeller, L. C., Samarut, J., Wondisford, F. E., . . . Refetoff, S. (2017). Thyroid Hormone Signaling Pathways: Time for a More Precise Nomenclature. Endocrinology, 158(7), 2052-2057. https://doi.org/10.1210/en.2017-00250

Hashimoto, K., Ishida, E., Matsumoto, S., Okada, S., Yamada, M., Satoh, T., . . . Mori, M. (2009). Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology, 150(7), 3417-3424. https://doi.org/10.1210/en.2009-0059

Hruby, A., & Hu, F. B. (2015). The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics, 33(7), 673-689. https://doi.org/10.1007/s40273-014-0243-x

Kyono, Y., Subramani, A., Ramadoss, P., Hollenberg, A. N., Bonett, R. M., & Denver, R. J. (2016). Liganded Thyroid Hormone Receptors Transactivate the DNA Methyltransferase 3a Gene in Mouse Neuronal Cells. Endocrinology, 157(9), 3647-3657. https://doi.org/10.1210/en.2015-1529

Leon, B. M., & Maddox, T. M. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World Journal of Diabetes, 6(13), 1246-1258. https://doi.org/10.4239/wjd.v6.i13.1246

Liu, Y. Y., & Brent, G. A. (2010). Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends in endocrinology and metabolism, 21(3), 166-173. https://doi.org/10.1016/j.tem.2009.11.004

Mendoza, A., & Hollenberg, A. N. (2017). New insights into thyroid hormone action. Pharmacology & Therapeutics, 173, 135-145. https://doi.org/10.1016/j.pharmthera.2017.02.012

Mitchenko, E. I., Korpachev, V. V., Putai, M. I., Man'kovskii, B. N., Pan'kiv, V. I., Svishchenko, E. L., . . . Kovaleva, O. N. (2008). Diagnostika i lechenie metabolicheskogo sindroma, sakharnogo diabeta, prediabeta i serdechno-sosudistykh zabolevanii [Diagnosis and treatment of metabolic syndrome, diabetes mellitus, pre-diabetes and cardiovascular diseases]. Mezhdunarodnyi endokrinologicheskii zhurnal, 3, 5-22. [in Russian].

Nolan, P. B., Carrick-Ranson, G., Stinear, J. W., Reading, S. A., & Dalleck, L. C. (2017). Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Preventive Medicine Reports, 19(7), 211-215. https://doi.org/10.1016/j.pmedr.2017.07.004

Taylor, P. N., Peeters, R., & Dayan, C. M. (2015). Genetic abnormalities in thyroid hormone deiodinases. Current Opinion in Endocrinology Diabetes and Obesity, 22(5), 402-406. https://doi.org/10.1097/med.0000000000000180

Poplawski, P., Rybicka, B., Boguslawska, J., Rodzika, K., Visser, T. J., . . . Piekielko-Witkowsk, A. (2017). Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells. Molecular and Cellular Endocrinology, 442, 58-67. https://doi.org/10.1016/j.mce.2016.12.004

Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews, 94(2), 355-382. https://doi.org/10.1152/physrev.00030.2013

Santoro, A. B., Vargens, D. D., Barros, M. D., Bulzico, D. A., Kowalski, L. P., Meirelles, R. M. R., . . . Suarez-Kurtz, G. (2014). Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer. British Journal of Clinical Pharmacology, 78(5), 1067-1075. https://doi.org/10.1111/bcp.12437

Skowrońska-Jóźwiak, E. (2015). The effect of Selenium on thyroid physiology and pathology. Thyroid Research, 8(1), A23. https://doi.org/10.1186/1756-6614-8-S1-A23

Verloop, H., Dekkers, O. M., Peeters, R. P., Schoones, J. W., & Smit, J. W. A. (2014). Genetic variation in deiodinases: a systematic review of potential clinical effects in humans. European Journal of Endocrinology, 171(3), R123-R135. doi:10.1530/eje-14-0302

Hwangbo, Y., & Park, Y. J. (2018). Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer. Endocrinology and Metabolism, 33(2), 175-184. doi:10.3803/EnM.2018.33.2.175

Khan, S. H., Fazal, N., Ijaz, A., Manzoor, S. M., Asif, N., Rafi, T., . . . Niazi, N. K. (2017). Insulin Resistance and Glucose Levels in Subjects with Subclinical Hypothyroidism. Jcpsp-Journal of the College of Physicians and Surgeons Pakistan, 27(6), 329-333.

Vyakaranam, S., Vanaparthy, S., Nori, S., Palarapu, S., & Bhongir, A. V. (2014). Study of Insulin Resistance in Subclinical Hypothyroidism. International Journal of Health Sciences and Research, 4(9), 147-153.

Panveloski-Costa, A. C., Serrano-Nascimento, C., Bargi-Souza, P., Poyares, L. L., Viana, G. D., & Nunes, M. T. (2018). Beneficial effects of thyroid hormone on adipose inflammation and insulin sensitivity of obese Wistar rats. Physiological Reports, 6(3). doi:10.14814/phy2.13550

Downloads

How to Cite

1.
Abramova NO, Pashkovska NV. Peculitaries of carbohydrate metabolism in patients with metabolic syndrome depending on C/Т polymоrphism in the DIO 1 gene. Pathologia [Internet]. 2019Dec.23 [cited 2024Mar.29];(3). Available from: http://pat.zsmu.edu.ua/article/view/188838

Issue

Section

Original research