Features of the pathomorphological structure of the aterosclerotic plaques of carotid aterosclerosis

Authors

  • Yu. I. Kuzyk Danylo Halytsky Lviv National Medical University, Pathologist of the CI LRC “Lviv Regional Pathology Bureau”, Ukraine,

DOI:

https://doi.org/10.14739/2310-1237.2019.3.188872

Keywords:

MMP-9, type I collagen, type III collagen, type IV collagen, TIMP-1, atherosclerotic plaques, carotid atherosclerosis

Abstract

Carotid arteriosclerosis is a recognized leader among causes of ischemic disorders of the cerebral circulation. It is known that brain infarction occurs with atherosclerotic stenosis and thrombosis of the carotid arteries in approximately 40 % of cases. The peculiar geometry of carotid bifurcation creates conditions for the development of atherosclerotic plaques.

The aim of the work is determination of pathomorphological features of the structure of atherosclerotic plaques in carotid atherosclerosis.

Materials and methods. Histological, histochemical and immunohistochemical studies of surgical material in 680 patients were performed.

Results. On the basis of pathomorphological analysis of the plaque in carotid AS they can be divided into complicated and uncomplicated. The first type is atheromatous unstable plaques with the prevalence of foci of atheromatosis, lympho-macrophage infiltration, intraplaque hemorrhage, necrosis of fibrous elements and edema. Immunohistochemically they are characterized by high expression of MMP-9 in macrophages and lymphocytes with degradation of type I collagen in the surface and deep layers of the plaque coating and its replacement by type III collagen (P < 0.05). The second type of plaque is stable uncomplicated with the advantage of fibrosis, hyalinosis and petrification. Immunohistochemical structure of plaques was collagen type I, expression of collagen type III was low, expression of MMP-9 was moderate (P < 0.05).

Conclusions. High expression of MMP-9 in carotid atherosclerosis in macrophage-lymphocytic infiltrates in atheromatosis and neovascularization sites was found to result in degradation of type I collagen with its replacement by type III collagen. Such pathomorphological changes underlie plaque instability – the development of intraplaque hemorrhages, ulcers with embolic complications. Synthesis of collagen type I with low expression of type III collagen and MMP-9 has been found to determine the basis of the structure of fibro-muscular plaques. This ensures their hemodynamic stability and stable vascular stenosis.

 

References

Anufriev, P. L., Gulevskaya, T. S., & Evdokimenko, A. N. (2013). “Nestabil'naya” struktura ateroskleroticheskikh blashek karotidnogo sinusa i narusheniya mozgovogo krovoobrashcheniya [“Unstable” structure of carotid sinus atherosclerotic plagues and disturbances of cerebral blood circulation]. Sovremennye problemy nauki i obrazovaniya, 3, 1-8. [in Russian]. Retrieved from http://www.science-education.ru/ru/article/view?id=9288

Anufriev, P. L., Evdokimenko, A. N., & Gulevskaya, T. S. (2018). Infarkty golovnogo mozga pri ateroskleroze arterii vertebrobaziliarnoi sistemy [Cerebral infarctions in vertebrobasilar artery atherosclerosis]. Arkhiv patologii, 80(1), 3-10. [in Russian]. https://doi.org/10.17116/patol20188013-10

Hetterich, H., Webber, N., Willner, M., Herzen, J., Birnbacher, L., Hipp, A., . . . Saam, T. (2016). AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography. European Radiology, 26(9), 3223-3233. https://doi.org/10.1007/s00330-015-4143-z

Tan, F. P. P., Soloperto, G., Bashford, S., Wood, N. B., Thom, S., Hughes, A., & Xu, X. Y. (2008). Analysis of Flow Disturbance in a Stenosed Carotid Artery Bifurcation Using Two-Equation Transitional and Turbulence Models. Journal of Biomechanical Engineering-Transactions of the Asme, 130(6). https://doi.org/10.1115/1.2978992

Birchall, D., Zaman, A., Hacker, J., Davies, G., & Mendelow, D. (2006). Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics. European Radiology, 16(5), 1074-1083. https://doi.org/10.1007/s00330-005-0048-6

Tan, C. H., Liu, Y., Li, W. N., Deng, F., Liu, X., Wang, X., . . . Chen, L. F. (2014). Associations of matrix metalloproteinase-9 and monocyte chemoattractant protein-1 concentrations with carotid atherosclerosis, based on measurements of plaque and intima-media thickness. Atherosclerosis, 232(1), 199-203. https://doi.org/10.1016/j.atherosclerosis.2013.11.040

Silvestre-Roig, C., de Winther, M. P., Weber, C., Daemen, M. J., Lutgens, E., & Soehnlein, O. (2014). Atherosclerotic Plaque Destabilization Mechanisms, Models, and Therapeutic Strategies. Circulation Research, 114(1), 214-226. https://doi.org/10.1161/circresaha.114.302355

Bijari, P. B., Wasserman, B. A., & Steinman, D. A. (2014). Carotid Bifurcation Geometry Is an Independent Predictor of Early Wall Thickening at the Carotid Bulb. Stroke, 45(2), 473-478. https://doi.org/10.1161/strokeaha.113.003454

Flaherty, M. L., Kissela, B., Khoury, J. C., Alwell, K., Moomaw, C. J., Woo, D., . . . Kleindorfer, D. (2013). Carotid Artery Stenosis as a Cause of Stroke. Neuroepidemiology, 40(1), 36-41. https://doi.org/10.1159/000341410

Gupta, A., Baradaran, H., Schweitzer, A. D., Kamel, H., Pandya, A., Delgado, D., . . . Sanelli, P. C. (2013). Carotid Plaque MRI and Stroke Risk A Systematic Review and Meta-analysis. Stroke, 44(11), 3071-3077. https://doi.org/10.1161/strokeaha.113.002551

Van den Bouwhuijsen, Q. J. A., Bos, D., Ikram, M. A., Hofman, A., Krestin, G. P., Franco, O. H., . . . Vernooij, M. W. (2015). Coexistence of Calcification, Intraplaque Hemorrhage and Lipid Core within the Asymptomatic Atherosclerotic Carotid Plaque: The Rotterdam Study. Cerebrovascular Diseases, 39(5-6), 319-324. https://doi.org/10.1159/000381138

Teng, Z. Z., He, J., Degnan, A. J., Chen, S. Y., Sadat, U., Bahaei, N. S., . . . Gillard, J. H. (2012). Critical mechanical conditions around neovessels in carotid atherosclerotic plaque may promote intraplaque hemorrhage. Atherosclerosis, 223(2), 321-326. https://doi.org/10.1016/j.atherosclerosis.2012.06.015

Jager, N. A., Vries, B. M. W., Hillebrands, J. L., Harlaar, N. J., Tio, R. A., Slart, R., . . . Westra, J. (2016). Distribution of Matrix Metalloproteinases in Human Atherosclerotic Carotid Plaques and Their Production by Smooth Muscle Cells and Macrophage Subsets. Molecular Imaging and Biology, 18(2), 283-291. https://doi.org/10.1007/s11307-015-0882-0

Uslu, B., Cakmak, Y. O., Sehirli, U., Keskinoz, E. N., Cosgun, E., Arbak, S., & Yalin, A. (2016). Early Onset of Atherosclerosis of The Carotid Bifurcation in Newborn Cadavers. Journal of Clinical and Diagnostic Research, 10(5), AC1-AC5. https://doi.org/10.7860/jcdr/2016/19827.7706

Fields, G. B. (2013). Interstitial Collagen Catabolism. Journal of Biological Chemistry, 288(13), 8785-8793. https://doi.org/10.1074/jbc.R113.451211

Libby, P. (2013). Collagenases and cracks in the plaque. Journal of Clinical Investigation, 123(8), 3201-3203. https://doi.org/10.1172/jci67526

Lim, S. N., Chang, Y. J., & Lin, S. K. (2016). Extracranial Carotid Artery Disease Risk Factors and Outcomes in Patients With Acute Critical Hemispheric Ischemic Stroke. Journal of Ultrasound in Medicine, 35(2), 341-348. https://doi.org/10.7863/ultra.15.03070

Makris, G. C., Nicolaides, A. N., Xu, X. Y., & Geroulakos, G. (2010). Introduction to the biomechanics of carotid plaque pathogenesis and rupture: review of the clinical evidence. British Journal of Radiology, 83(993), 729-735. https://doi.org/10.1259/bjr/49957752

Bentzon, J. F., Otsuka, F., Virmani, R., & Falk, E. (2014). Mechanisms of Plaque Formation and Rupture. Circulation Research, 114(12), 1852-1866. https://doi.org/10.1161/circresaha.114.302721

Huang, X., Yin, X. P., Xu, Y. J., Jia, X. W., Li, J. H., Niu, P., . . . Huo, Y. L. (2016). Morphometric and hemodynamic analysis of atherosclerotic progression in human carotid artery bifurcations. American Journal of Physiology-Heart and Circulatory Physiology, 310(5), H639-H647. https://doi.org/10.1152/ajpheart.00464.2015

Michel, J. B., Martin-Ventura, J. L., Nicoletti, A., & Ho-Tin-Noe, B. (2014). Pathology of human plaque vulnerability: Mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis, 234(2), 311-319. https://doi.org/10.1016/j.atherosclerosis.2014.03.020

Teng, Z. Z., Sadat, U., Brown, A. J., & Gillard, J. H. (2014). Plaque hemorrhage in carotid artery disease: Pathogenesis, clinical and biomechanical considerations. Journal of Biomechanics, 47(4), 847-858. https://doi.org/10.1016/j.jbiomech.2014.01.013

Altaf, N., Kandiyil, N., Hosseini, A., Mehta, R., MacSweeney, S., & Auer, D. (2014). Risk Factors Associated With Cerebrovascular Recurrence in Symptomatic Carotid Disease: A Comparative Study of Carotid Plaque Morphology, Microemboli Assessment and the European Carotid Surgery Trial Risk Model. Journal of the American Heart Association, 3(3). https://doi.org/10.1161/jaha.113.000173

Van Doren, S. R. (2015). Matrix metalloproteinase interactions with collagen and elastin. Matrix Biology, 44-46, 224-231. https://doi.org/10.1016/j.matbio.2015.01.005

De Wilde, D., Trachet, B., Van Der Donckt, C., Vandeghinste, B., Descamps, B., Vanhove, C., . . . Segers, P. (2015). Vulnerable plaque detection and quantification with gold particle-enhanced computed tomography in atherosclerotic mouse models. Molecular Imaging, 14(4). https://doi.org/10.2310/7290.2015.00009

Downloads

How to Cite

1.
Kuzyk YI. Features of the pathomorphological structure of the aterosclerotic plaques of carotid aterosclerosis. Pathologia [Internet]. 2019Dec.23 [cited 2024Apr.25];(3). Available from: http://pat.zsmu.edu.ua/article/view/188872

Issue

Section

Original research