Immunohistochemical characteristics of the angiogenesis processes in brain tissue in diabetes mellitus type 2

Authors

  • Yu. M. Avramenko Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1237.2020.1.203736

Keywords:

diabetes mellitus, angiogenesis, VEGF, VEGFR-2, CD31, CD105

Abstract

 

Aim – to study the features of VEGF, VEGFR-2 and CD31, CD105 immunohistochemical expression in the cerebral cortex in diabetes mellitus type 2.

Materials and methods. Pathomorphological and immunohistochemical studies of the brain tissue section material were performed in 3 groups of observations: group I – control without DM and cerebrovascular pathology, group II – died with dyscirculatory-ischemic encephalopathy (DIE), group III – died with DM type 2.

Results. Increased expression of VEGF and VEGFR-2 was found both in dyscirculatory-ischemic encephalopathy and in patients with diabetes mellitus type 2 (VEGF in the control group – 0.337 (0.232; 0.617) %, in the group with DIE – 0.713 (0.438); 1.304) %, in the group with diabetes mellitus type 2 – 1.003 (0.699; 1.631) %; VEGFR-2 in the group of control – 0.916 (0.550; 1.56) %, in the group with DIE – 1,238 (0.76; 1.61) %, in the group with DM type 2 – 1.15 (0.58; 1.784) %. There is direct correlation between the level of expression of CD105 and VEGFR-2: r = 0.31 for diabetes type 2. The distribution density of microvessels significantly increases in the group with DM type 2. Significant increase in expression of CD105 in the group with DM type 2 (0.434 (0.265; 0.741) %) was found, compared with the group of control (0.346 (0.263; 0.46) %). There are direct correlations between CD31 and CD105 expression in DIE (r = 0,41) and in the group with DM type 2 (r = 0,39, P < 0.05).

Conclusions. Angiogenesis is activated in the cerebral cortex in diabetes type 2, which may be due to the activation of the transcription factor HIF-1a.

 

References

Ergul, A., Abdelsaid, M., Fouda, A. Y., & Fagan, S. C. (2014). Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. Journal of Cerebral Blood Flow and Metabolism, 34(4), 553-563. https://doi.org/10.1038/jcbfm.2014.18

Li, W. G., Prakash, R., Kelly-Cobbs, A. I., Ogbi, S., Kozak, A., El-Remessy, A. B., Schreihofer, D. A., Fagan, S. C., & Ergul, A. (2010). Adaptive Cerebral Neovascularization in a Model of Type 2 Diabetes Relevance to Focal Cerebral Ischemia. Diabetes, 59(1), 228-235. https://doi.org/10.2337/db09-0902

Roslavtceva, V. V., Salmina, A. B., Prokopenko, S. V., Pozhilenkova, E. A., Kobanenko, I. V., & Rezvitskaya, G. G. (2016). Sosudistyi endotelial'nyi faktor rosta v regulyatsii razvitiya i funktsionirovaniya golovnogo mozga: novye molekuly-misheni dlya farmakoterapii [The role of vascular endothelial growth factor in the regulation of development and functioning of the brain: new target molecules for pharmacotherapy]. Biomeditsinskaya Khimiya, 62(2), 124-133. [in Russian]. https://doi.org/10.18097/PBMC20166202124

Rud’ko, A. S., Efendieva, M. Kh., Budzinskaya, M. V., & Karpilova, M. A. (2017). Vlijanie faktora rosta jendotelija sosudov na angiogenez i nejrogenez [Influence of vascular endothelial growth factor on angiogenesis and neurogenesis]. Vestnik oftal'mologii, (3), 75-80. [in Russian]. https://doi.org/10.17116/oftalma2017133375-80

Harde, E., Nicholson, L., Cuadrado, B. F., Bissen, D., Wigge, S., Urban, S., Segarra, M., de Almodovar, C. R., & Acker-Palmer, A. (2019). EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. Elife, 8, Article e49819. https://doi.org/10.7554/eLife.49819

Theis, V., & Theiss, C. (2018). VEGF - A Stimulus for Neuronal Development and Regeneration in the CNS and PNS. Current Protein & Peptide Science, 19(6), 589-597. https://doi.org/10.2174/1389203719666180104113937

Geiseler, S. J., & Morland, C. (2018). The Janus Face of VEGF in Stroke. International Journal of Molecular Sciences, 19(5), Article 1362. https://doi.org/10.3390/ijms19051362

Harris, R., Miners, J. S., Allen, S., & Love, S. (2018). VEGFR1 and VEGFR2 in Alzheimer's Disease. Journal of Alzheimers Disease, 61(2), 741-752. https://doi.org/10.3233/jad-170745

Fukumitsu, R., Takagi, Y., Yoshida, K., & Miyamoto, S. (2013). Endoglin (CD105) is a more appropriate marker than CD31 for detecting microvessels in carotid artery plaques. Surgical Neurology International, 4(1), 132. https://doi.org/10.4103/2152-7806.119081

Prasol, V. A., Myasoedov, K. V., & Gilyov, B. V. (2015). Prognosticheskie markery techeniya kriticheskoi ishemii nizhnikh konechnostei [Prognostic markers of the course of critical lower limb ischemia]. Kharkivska khirurhichna shkola, (6), 14-22. [in Russian].

Zhu, W., Ma, L., Zhang, R., & Su, H. (2017). The roles of endoglin gene in cerebrovascular diseases. Neuroimmunology and Neuroinflammation, 4(10), 199-210. https://doi.org/10.20517/2347-8659.2017.18

Kopczyńska, E., & Makarewicz, R. (2012). Endoglin - A marker of vascular endothelial cell proliferation in cancer. Wspolczesna Onkologia, 16(1), 68-71. https://doi.org/10.5114/wo.2012.27340

Bosari, S., Lee, A. K. C., DeLellis, R. A., Wiley, B. D., Heatley, G. J., & Silverman, M. L. (1992). Microvessel quantitation and prognosis in invasive breast carcinoma. Human Pathology, 23(7), 755-761. https://doi.org/10.1016/0046-8177(92)90344-3

Ebersole, J. L., Novak, M. J., Orraca, L., Martinez-Gonzalez, J., Kirakodu, S., Chen, K. C., Stromberg, A., & Gonzalez, O. A. (2018). Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology, 154(3), 452-464. https://doi.org/10.1111/imm.12894

Yang, G. L., & Li, L. Y. (2018). Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15. Signal Transduction and Targeted Therapy, 3, Article Unsp 21. https://doi.org/10.1038/s41392-018-0023-8

Abhinand, C. S., Raju, R., Soumya, S. J., Arya, P. S., & Sudhakaran, P. R. (2016). VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. Journal of Cell Communication and Signaling, 10(4), 347-354. https://doi.org/10.1007/s12079-016-0352-8

Prakash, R., Somanath, P. R., El-Remessy, A. B., Kelly-Cobbs, A., Stern, J. E., Dore-Duffy, P., Johnson, M., Fagan, S. C., & Ergul, A. (2012). Enhanced cerebral but not peripheral angiogenesis in the Goto-Kakizaki model of type 2 diabetes involves VEGF and peroxynitrite signaling. Diabetes, 61(6), 1533-1542. https://doi.org/10.2337/db11-1528

Rossi, E., Bernabeu, C., & Smadja, D. M. (2019). Endoglin as an Adhesion Molecule in Mature and Progenitor Endothelial Cells: A Function Beyond TGF-beta. Frontiers in Medicine, 6, Article 10. https://doi.org/10.3389/fmed.2019.00010

Tian, H. Y., Huang, J. J., Golzio, C., Gao, X., Hector-Greene, M., Katsanis, N., & Blobe, G. C. (2018). Endoglin interacts with VEGFR2 to promote angiogenesis. Faseb Journal, 32(6), 2934-2949. https://doi.org/10.1096/fj.201700867RR

How to Cite

1.
Avramenko YM. Immunohistochemical characteristics of the angiogenesis processes in brain tissue in diabetes mellitus type 2. Pathologia [Internet]. 2020May25 [cited 2024Mar.29];(1). Available from: http://pat.zsmu.edu.ua/article/view/203736

Issue

Section

Original research