Ultrastructural features of astroglial endosomal system state in sepsis-associated encephalopathy

Authors

DOI:

https://doi.org/10.14739/2310-1237.2020.1.203742

Keywords:

astroglia, sepsis associated encephalopathy, multivesicular bodies

Abstract

 

Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, with a range of dysfunctional brain disorders. Astrocytes, as the main homeostatic brain cells, play a key role during adaptation of brain tissue to acute damage.

The aim. To determine the ultrastructural state of endosomal system of astrocytes in the rat brain under experimental conditions of systemic inflammation.

Materials and methods. Male Wistar rats were divided into 2 groups: control group (5 sham-operated animals); the main group with cecal ligation and puncture (CLP, 10 animals). The study of cortex and subcortical white matter of sensorimotor zone in the period between 12 and 24 h after operation was carried out using TEM.

Results. In CLP group, starting from 12 h after operation the number of multivesicular bodies (MVBs) increased in astroglial pericaryons and processes. Thus, deceased animals showed a tendency to increase in number of endosomes compared with control and the predominance of their localization in the pericarions of astrocytes. Astroglia of survived animals of CLP group showed the lesser degree of intracellular edema and accumulation of MVBs into perivascular astroglial endfeet, where they exceeded control up to 3 times.

Conclusion. In conditions of SAE, starting from 12 h after operation, brain astrocytes show obvious reactive changes with an activation of their endosomal-exosomal machinery, which reflects a high degree of adaptive activity of astroglia and compensatory phase of the pathological state of tissue. One of the ultrastructural signs of this phenomenon is the increased density of MVBs and redistribution of latter predominantly in capillary astrocytic endfeet. The accumulation of MVBs in astrocytic processes may indicate the activation of their intercellular and gliovascular interactions through endo- and exocytosis in the acute phase of adaptive processes under conditions of SAE. This fact emphasizes the special role of astroglia in the compensation of impaired brain homeostasis in SAE.

References

Lamar, C. D., Hurley, R. A., & Taber, K. H. (2011). Sepsis-Associated Encephalopathy: Review of the Neuropsychiatric Manifestations and Cognitive Outcome. Journal of Neuropsychiatry and Clinical Neurosciences, 23(3), 236-241. https://doi.org/10.1176/appi.neuropsych.23.3.237

Shuliatnikova, T. V, & Shavrin, V. O. (2018). Sepsis associated encephalopathy and abdominal sepsis: current state of problem. Art of Medicine, (3), 158-165.

Sartelli, M., Abu-Zidan, F. M., Catena, F., Griffiths, E. A., Di Saverio, S., Coimbra, R., & Ansaloni, L. (2015). Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: a prospective multicentre study (WISS Study). World Journal of Emergency Surgery, 10, Article 61. https://doi.org/10.1186/s13017-015-0055-0

Shulyatnikova, T., & Verkhratsky, A. (2020). Astroglia in Sepsis Associated Encephalopathy. Neurochemical Research, 45(1), 83-99. https://doi.org/10.1007/s11064-019-02743-2

Sonneville, R., Verdonk, F., Rauturier, C., Klein, I. F., Wolff, M., Annane, D., Chretien, F., & Sharshar, T. (2013). Understanding brain dysfunction in sepsis. Annals of Intensive Care, 3, Article 15. https://doi.org/10.1186/2110-5820-3-15

Chaudhry, N., & Duggal, A. K. (2014). Sepsis Associated Encephalopathy. Advances in Medicine, 2014, 1-16. https://doi.org/10.1155/2014/762320

Verkhratsky, A., & Nedergaard, M. (2018). Physiology of Astroglia. Physiological Reviews, 98(1), 239-389. https://doi.org/10.1152/physrev.00042.2016

Sofroniew, M. V. (2015). Astrocyte barriers to neurotoxic inflammation. Nature Reviews Neuroscience, 16(5), 249-263. https://doi.org/10.1038/nrn3898

Zorec, R., Zupanc, T. A., & Verkhratsky, A. (2019). Astrogliopathology in the infectious insults of the brain. Neuroscience Letters, 689, 56-62. https://doi.org/10.1016/j.neulet.2018.08.003

Vardjan, N., & Zorec, R. (2015). Excitable astrocytes: Ca2+- and cAMP-regulated exocytosis. Neurochemical Research, 40(12), 2414-2424. https://doi.org/10.1007/s11064-015-1545-x

Verkhratsky, A., Matteoli, M., Parpura, V., Mothet, J. P., & Zorec, R. (2016). Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. Embo Journal, 35(3), 239-257. https://doi.org/10.15252/embj.201592705

Vardjan, N., Parpura, V., Verkhratsky, A., & Zorec, R. (2019). Gliocrine system: Astroglia as secretory cells of the CNS. In Advances in Experimental Medicine and Biology (Vol. 1175, pp. 93-115). Springer New York LLC. https://doi.org/10.1007/978-981-13-9913-8_4

Turchinovich, A., Drapkina, O., & Tonevitsky, A. (2019). Transcriptome of Extracellular Vesicles: State-of-the-Art. Frontiers in Immunology, 10, Article 202. https://doi.org/10.3389/fimmu.2019.00202

Liu, T., Zhang, Q., Zhang, J. K., Li, C., Miao, Y. R., Lei, Q., Li, Q. B., & Guo, A. Y. (2019). EVmiRNA: a database of miRNA profiling in extracellular vesicles. Nucleic Acids Research, 47(D1), D89-D93. https://doi.org/10.1093/nar/gky985

Lian, H., Yang, L., Cole, A., Sun, L., Chiang, A. C. A., Fowler, S. W., Shim, D. J., Rodriguez-Rivera, J., Taglialatela, G., Jankowsky, J. L., Lu, H. C., & Zheng, H. (2015). NFκB-Activated Astroglial Release of Complement C3 Compromises Neuronal Morphology and Function Associated with Alzheimer’s Disease. Neuron, 85(1), 101–115. https://doi.org/10.1016/j.neuron.2014.11.018

Vardjan, N., Gabrijel, M., Potokar, M., Svajger, U., Kreft, M., Jeras, M., de Pablo, Y., Faiz, M., Pekny, M., & Zorec, R. (2012). IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. Journal of Neuroinflammation, 9. https://doi.org/10.1186/1742-2094-9-144

Božić, M., Verkhratsky, A., Zorec, R., & Stenovec, M. (2019). Exocytosis of large-diameter lysosomes mediates interferon γ-induced relocation of MHC class II molecules toward the surface of astrocytes. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-019-03350-8

Huotari, J., & Helenius, A. (2011). Endosome maturation. EMBO Journal, 30(17), 3481-3500. https://doi.org/10.1038/emboj.2011.286

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., & Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular Endosomes. Science, 319(5867), 1244-1247. https://doi.org/10.1126/science.1153124

Luzio, J. P., Gray, S. R., & Bright, N. A. (2010). Endosome-lysosome fusion. Biochemical Society Transactions, 38, 1413-1416. https://doi.org/10.1042/bst0381413

Hanson, P. I., & Cashikar, A. (2012). Multivesicular Body Morphogenesis. Annual Review of Cell and Developmental Biology, Vol 28, 28, 337-362. https://doi.org/10.1146/annurev-cellbio-092910-154152

Doyle, L. M., & Wang, M. Z. (2019). Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 8(7), Article 727. https://doi.org/10.3390/cells8070727

EP and Council. (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. OJ L276:33.

Rittirsch, D., Huber-Lang, M. S., Flierl, M. A., & Ward, P. A. (2009). Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols, 4(1), 31-36. https://doi.org/10.1038/nprot.2008.214

Toscano, M. G., Ganea, D., & Gamero, A. M. (2011). Cecal Ligation Puncture Procedure. Jove-Journal of Visualized Experiments, (51), Article e2860. https://doi.org/10.3791/2860

Su, W., Aloi, M. S., & Garden, G. A. (2016). MicroRNAs mediating CNS inflammation: Small regulators with powerful potential. Brain Behavior and Immunity, 52, 1-8. https://doi.org/10.1016/j.bbi.2015.07.003

Gaudet, A. D., Fonken, L. K., Watkins, L. R., Nelson, R. J., & Popovich, P. G. (2018). MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist, 24(3), 221-245. https://doi.org/10.1177/1073858417721150

Nuzziello, N., & Liguori, M. (2019). The MicroRNA Centrism in the Orchestration of Neuroinflammation in Neurodegenerative Diseases. Cells, 8(10), Article 1193. https://doi.org/10.3390/cells8101193

Balusu, S., Van Wonterghem, E., De Rycke, R., Raemdonck, K., Stremersch, S., Gevaert, K., Brkic, M., Demeestere, D., Vanhooren, V., Hendrix, A., Libert, C., & Vandenbroucke, R. E. (2016). Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. Embo Molecular Medicine, 8(10), 1162-1183. https://doi.org/10.15252/emmm.201606271

Wang, G. H., Dinkins, M., He, Q., Zhu, G., Poirier, C., Campbell, A., Mayer-Proschel, M., & Bieberich, E. (2012). Astrocytes Secrete Exosomes Enriched with Proapoptotic Ceramide and Prostate Apoptosis Response 4 (PAR-4) potential mechanism of apoptosis induction in Alzheimer disease (AD). Journal of Biological Chemistry, 287(25), 21384-21395. https://doi.org/10.1074/jbc.M112.340513

Fader, C. M., & Colombo, M. I. (2009). Autophagy and multivesicular bodies: two closely related partners. Cell Death and Differentiation, 16(1), 70-78. https://doi.org/10.1038/cdd.2008.168

Rusten, T. E., & Simonsen, A. (2008). ESCRT functions in autophagy and associated disease. Cell Cycle, 7(9), 1166-1172. https://doi.org/10.4161/cc.7.9.5784

Meng, T., Lin, S., Zhuang, H., Huang, H., He, Z., Hu, Y., Gong, Q., & Feng, D. (2019). Recent progress in the role of autophagy in neurological diseases. Cell Stress, 3(5), 141–161. https://doi.org/10.15698/cst2019.05.186

Banerjee, R., Beal, M. F., & Thomas, B. (2010). Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends in Neurosciences, 33(12), 541-549. https://doi.org/10.1016/j.tins.2010.09.001

Guo, F., Liu, X. Y., Cai, H. B., & Le, W. D. (2018). Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathology, 28(1), 3-13. https://doi.org/10.1111/bpa.12545

Pascua-Maestro, R., Gonzalez, E., Lillo, C., Ganfornina, M. D., Falcon-Perez, J. M., & Sanchez, D. (2019). Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Frontiers in Cellular Neuroscience, 12, Article 526. https://doi.org/10.3389/fncel.2018.00526

Venturini, A., Passalacqua, M., Pelassa, S., Pastorino, F., Tedesco, M., Cortese, K., Gagliani, M. C., Leo, G., Maura, G., Guidolin, D., Agnati, L. F., Marcoli, M., & Cervetto, C. (2019). Exosomes From Astrocyte Processes: Signaling to Neurons. Frontiers in Pharmacology, 10, Article 1452. https://doi.org/10.3389/fphar.2019.01452

Lafourcade, C., Ramirez, J. P., Luarte, A., Fernandez, A., & Wyneken, U. (2016). MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity. Journal of Experimental Neuroscience, 10, 1-9. https://doi.org/10.4137/jen.s39916

Schiera, G., Di Liegro, C. M., & Di Liegro, I. (2020). Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. International Journal of Molecular Sciences, 21(1), Article 266. https://doi.org/10.3390/ijms21010266

Santello, M., Cali, C., & Bezzi, P. (2012). Gliotransmission and the Tripartite Synapse. Synaptic Plasticity: Dynamics, Development and Disease, 970, 307-331. https://doi.org/10.1007/978-3-7091-0932-8_14

Durkee, C. A., & Araque, A. (2019). Diversity and Specificity of Astrocyte-neuron Communication. Neuroscience, 396, 73-78. https://doi.org/10.1016/j.neuroscience.2018.11.010

Verkhratsky, A., & Nedergaard, M. (2014). Astroglial cradle in the life of the synapse. Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1654), Article 20130595. https://doi.org/10.1098/rstb.2013.0595

van Gool, W. A., van de Beek, D., & Eikelenboom, P. (2010). Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet, 375(9716), 773-775. https://doi.org/10.1016/s0140-6736(09)61158-2

Bernardinelli, Y., Randall, J., Janett, E., Nikonenko, I., Konig, S., Jones, E. V., Flores, C. E., Murai, K. K., Bochet, C. G., Holtmaat, A., & Muller, D. (2014). Activity-Dependent Structural Plasticity of Perisynaptic Astrocytic Domains Promotes Excitatory Synapse Stability. Current Biology, 24(15), 1679-1688. https://doi.org/10.1016/j.cub.2014.06.025

How to Cite

1.
Shuliatnikova TV, Shavrin VO. Ultrastructural features of astroglial endosomal system state in sepsis-associated encephalopathy. Pathologia [Internet]. 2020May25 [cited 2024Dec.23];(1). Available from: http://pat.zsmu.edu.ua/article/view/203742

Issue

Section

Original research