Гістологічні зміни гіпокампа обох півкуль головного мозку щурів ліній Wistar і SHR за умов експериментальної хронічної церебральної гіпоперфузії

Автор(и)

DOI:

https://doi.org/10.14739/2310-1237.2020.3.221868

Ключові слова:

хронічна церебральна гіпоперфузія, оклюзія загальної сонної артерії, артеріальна гіпертензія

Анотація

 

Хронічну церебральну гіпоперфузію та артеріальну гіпертензію вважають факторами ризику розвитку цереброваскулярних захворювань, але патофізіологічні механізми, які лежать в їхній основі, залишаються нез’ясованими.

Мета роботи – дослідити гістологічні зміни гіпокампа обох півкуль головного мозку щурів ліній Wistar і SHR за умов хронічної церебральної гіпоперфузії.

Матеріали та методи. Дослідження виконали на щурах ліній Wistar і SHR (6 тижнів, вага 95–100 г), яким перев’язували ліву загальну сонну артерію для моделювання хронічної гіпоперфузії головного мозку (ХГГМ). Усі маніпуляції виконали на анестезованих кетаміном (60 мг/кг, i.p.) тваринах. Через 8 тижнів вивчали особливості ушкодження гіпокампа обох півкуль головного мозку.

Результати. Показана міжпівкульова різниця за кількістю клітин гіпокампа з ознаками фрагментації ядра в контрольних щурів ліній Wistar і SHR із перевагою показника в останніх зліва. Моделювання ХГГМ викликало ушкодження гіпокампа обох півкуль головного мозку. У цих умовах кількість пошкоджених клітин гіпокампа більша у SHR щурів порівняно зі щурами лінії Wistar у лівій півкулі на 34,7 % (p < 0,05), а у правому гіпокампі щурів обох ліній збільшення кількості таких клітин майже однакове.

Висновки. Результати дослідження показали, що збільшення кількості клітин гіпокампа з ознаками фрагментації ядра при ХГГМ спостерігали в щурів обох ліній, але вираженість змін більша саме у тварин лінії SHR. Це свідчить про підвищення ступеня ризику структурних ушкоджень мозку за наявності гіпертензії.

Посилання

Daulatzai M. A. (2017). Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. Journal of neuroscience research, 95(4), 943-972. https://doi.org/10.1002/jnr.23777

Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 367(9524), 1747-1757. https://doi.org/10.1016/S0140-6736(06)68770-9

Luo, D. H., Tseng, W. I., & Chang, Y. L. (2019). White matter microstructure disruptions mediate the adverse relationships between hypertension and multiple cognitive functions in cognitively intact older adults. NeuroImage, 197, 109-119. https://doi.org/10.1016/j.neuroimage.2019.04.063

Thong-Asa, W., & Tilokskulchai, K. (2014). Neuronal damage of the dorsal hippocampus induced by long-term right common carotid artery occlusion in rats. Iranian journal of basic medical sciences, 17(3), 220-226.

ImageJ (Software). https://imagej.nih.gov/ij/download.html.

Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M., Bianchi, K., Blagosklonny, M. V., … Kroemer, G. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell death and differentiation, 25(3), 486-541. https://doi.org/10.1038/s41418-017-0012-4

Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4), 687-702. https://doi.org/10.1016/j.neuron.2011.05.001

Conover, J. C., & Notti, R. Q. (2008). The neural stem cell niche. Cell and tissue research, 331(1), 211-224. https://doi.org/10.1007/s00441-007-0503-6

Hawley, D. F., Morch, K., Christie, B. R., & Leasure, J. L. (2012). Differential response of hippocampal subregions to stress and learning. PloS one, 7(12), e53126. https://doi.org/10.1371/journal.pone.0053126

Smirnov, A. V., Schmidt, M. V., Ekova, M. R., Mednikov, D. S., Borodin, D. D., & Tyurenkov, I. N. (2013). Morfologicheskie izmeneniya v ventralnykh otdelakh gippokampa vzroslykh krys pri dlitelnom vozdeistvii kombinirovannogo stressa [Morphological changes in ventral hippocampus of adult rats upon prolonged exposure to combined stress]. Volgogradskii nauchno-meditsinskii zhurnal, (4), 14-17. [in Russian].

Bhat, S. A., Goel, R., Shukla, S., Shukla, R., & Hanif, K. (2018). Angiotensin Receptor Blockade by Inhibiting Glial Activation Promotes Hippocampal Neurogenesis Via Activation of Wnt/β-Catenin Signaling in Hypertension. Molecular neurobiology, 55(6), 5282-5298. https://doi.org/10.1007/s12035-017-0754-5

Liang, Y. Q., Kakino, A., Matsuzaka, Y., Mashimo, T., Isono, M., Akamatsu, T., Shimizu, H., Tajima, M., Kaneko, T., Li, L., Takeuchi, F., Sawamura, T., & Kato, N. (2020). LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1) Deletion Has Protective Effects on Stroke in the Genetic Background of Stroke-Prone Spontaneously Hypertensive Rat. Stroke, 51(6), 1835-1843. https://doi.org/10.1161/STROKEAHA.120.029421

Pavlova, I. P., Rysakova, M. P., Ziablitseva, E. A. (2010). Mezhpolusharnaya asimmetriya gippokampa i neokorteksa kak korrelyat aktivnoi i passivnoi strategii povedeniya v emotsional'no-negativnykh situatsiyakh [Interhemisphere asymmetry of hippocampus and neocortex incorrelates of active and passive behavioural strategy in negative emotional situations]. Rossiiskii fiziologicheskii zhurnal im. I. M. Sechenova, 96(12), 1156-1169. [in Russian].

Karpova, I. V., Mikheyev, V. V., Bychkov, Ye. R., Lebedev, A. A., & Shabanov, P. D. (2012). Asimmetriya v urovnyakh monoaminov v golovnom mozge myshei linii Balb/c, vyrashchennykh v usloviyakh sotsial'noi izolyatsii [Asymmetry in the content of brain monoamines of BALB /c mice reared in social isolation conditions]. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii, 10(4), 42-48. [in Russian].

Fabricius, K., Steiniger-Brach, B., Helboe, L., Fink-Jensen, A., & Wörtwein, G. (2011). Socially isolated rats exhibit changes in dopamine homeostasis pertinent to schizophrenia. International journal of developmental neuroscience, 29(3), 347-350. https://doi.org/10.1016/j.ijdevneu.2010.09.003

Zapara, T. A., Romashchenko, A. V., Proskura, A. L., & Ratushnyak, A. S. (2018). Vliyanie fizicheskoi aktivnosti na strukturnuyu asimmetriyu gippokampa myshi [Effect of physical activity on structural asymmetry of mouse hippocampus]. Vavilov Journal of Genetics and Breeding, 22(8), 1084-1089. [in Russian]. https://doi.org/10.18699/VJ18.454

Savitskaya, M. A., Onishchenko, G. E. (2015). Mechanisms of apoptosis. Biochemistry, 80(11), 1393-1405.

Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495-516. https://doi.org/10.1080/01926230701320337

Harmatina, O. Yu., Nosar, V. I., Kolesnikova, E. E., Lapikova-Bryhinska, T. Yu., Gavenauskas, B. L., Bratus, L. V., Mankovska, I. М., & Portnychenko, A. G. (2017). Osobennosti mitokhondrialnoi disfunktsii neironov krys linii Wistar i SHR v usloviyakh modelirovaniya khronicheskoi ishemii golovnogo mozga [Peculiarities of neuron mitochondrial dysfunction in VVistar and SIIR rats under modeling of chronic brain ischemia]. Patolohiia, reabilitatsiia, adaptatsiia, 2017. 15(2), 76-86. [in Russian].

##submission.downloads##

Номер

Розділ

Оригінальні дослідження