Histological changes in the hippocampus of both cerebral hemispheres of Wistar and SHR rats under experimental chronic cerebral hypoperfusion

Authors

DOI:

https://doi.org/10.14739/2310-1237.2020.3.221868

Keywords:

chronic cerebral hypoperfusion, occlusion of common carotid artery, arterial hypertension

Abstract

 

Сhronic cerebral hypoperfusion (ChCH) and arterial hypertension are the factors of risk for сerebrovascular diseases, nevertheless the underlying pathophysiological mechanisms remain unclear.

Aim. To investigate histological hippocampal changes in both cerebral hemispheres of Wistar and SHR rats under the chronic cerebral hypoperfusion conditions.

Маterials and methods. The experiments were carried out on male Wistar and SHR rats (6 weeks old, weight 95–100 g), which underwent occlusion of left common carotid artery to model ChCH. All manipulations were carried out in anesthetized with ketamine (60 mg/kg, i.p.) animals. In 8 weeks, the features of the hippocampal structure damage wer studied.

Results. An interhemispheric difference in the level of hippocampal cells with the signs of nuclear fragmentation in the control Wistar and SHR rats with more pronounced indices in the latter on the left was shown. ChCH modeling caused hippocampal damage in both cerebral hemispheres. Under these conditions, the number of damaged hippocampal cells was higher in SHR than in Wistar rats on the left by 34.7 % (P < 0.05), and in the right hippocampus of both lines’ rats the increase in such cells was almost the same.

Conclusion. Taken together, these data showed that an increase in the number of neurons with the signs of nuclear fragmentation under ChCH was observed in both rat lines, and the severity of changes was greater in SHR animals, which indicates an increased risk of structural brain damage in the presence of hypertension.

References

Daulatzai M. A. (2017). Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. Journal of neuroscience research, 95(4), 943-972. https://doi.org/10.1002/jnr.23777

Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 367(9524), 1747-1757. https://doi.org/10.1016/S0140-6736(06)68770-9

Luo, D. H., Tseng, W. I., & Chang, Y. L. (2019). White matter microstructure disruptions mediate the adverse relationships between hypertension and multiple cognitive functions in cognitively intact older adults. NeuroImage, 197, 109-119. https://doi.org/10.1016/j.neuroimage.2019.04.063

Thong-Asa, W., & Tilokskulchai, K. (2014). Neuronal damage of the dorsal hippocampus induced by long-term right common carotid artery occlusion in rats. Iranian journal of basic medical sciences, 17(3), 220-226.

ImageJ (Software). https://imagej.nih.gov/ij/download.html.

Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M., Bianchi, K., Blagosklonny, M. V., … Kroemer, G. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell death and differentiation, 25(3), 486-541. https://doi.org/10.1038/s41418-017-0012-4

Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4), 687-702. https://doi.org/10.1016/j.neuron.2011.05.001

Conover, J. C., & Notti, R. Q. (2008). The neural stem cell niche. Cell and tissue research, 331(1), 211-224. https://doi.org/10.1007/s00441-007-0503-6

Hawley, D. F., Morch, K., Christie, B. R., & Leasure, J. L. (2012). Differential response of hippocampal subregions to stress and learning. PloS one, 7(12), e53126. https://doi.org/10.1371/journal.pone.0053126

Smirnov, A. V., Schmidt, M. V., Ekova, M. R., Mednikov, D. S., Borodin, D. D., & Tyurenkov, I. N. (2013). Morfologicheskie izmeneniya v ventralnykh otdelakh gippokampa vzroslykh krys pri dlitelnom vozdeistvii kombinirovannogo stressa [Morphological changes in ventral hippocampus of adult rats upon prolonged exposure to combined stress]. Volgogradskii nauchno-meditsinskii zhurnal, (4), 14-17. [in Russian].

Bhat, S. A., Goel, R., Shukla, S., Shukla, R., & Hanif, K. (2018). Angiotensin Receptor Blockade by Inhibiting Glial Activation Promotes Hippocampal Neurogenesis Via Activation of Wnt/β-Catenin Signaling in Hypertension. Molecular neurobiology, 55(6), 5282-5298. https://doi.org/10.1007/s12035-017-0754-5

Liang, Y. Q., Kakino, A., Matsuzaka, Y., Mashimo, T., Isono, M., Akamatsu, T., Shimizu, H., Tajima, M., Kaneko, T., Li, L., Takeuchi, F., Sawamura, T., & Kato, N. (2020). LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1) Deletion Has Protective Effects on Stroke in the Genetic Background of Stroke-Prone Spontaneously Hypertensive Rat. Stroke, 51(6), 1835-1843. https://doi.org/10.1161/STROKEAHA.120.029421

Pavlova, I. P., Rysakova, M. P., Ziablitseva, E. A. (2010). Mezhpolusharnaya asimmetriya gippokampa i neokorteksa kak korrelyat aktivnoi i passivnoi strategii povedeniya v emotsional'no-negativnykh situatsiyakh [Interhemisphere asymmetry of hippocampus and neocortex incorrelates of active and passive behavioural strategy in negative emotional situations]. Rossiiskii fiziologicheskii zhurnal im. I. M. Sechenova, 96(12), 1156-1169. [in Russian].

Karpova, I. V., Mikheyev, V. V., Bychkov, Ye. R., Lebedev, A. A., & Shabanov, P. D. (2012). Asimmetriya v urovnyakh monoaminov v golovnom mozge myshei linii Balb/c, vyrashchennykh v usloviyakh sotsial'noi izolyatsii [Asymmetry in the content of brain monoamines of BALB /c mice reared in social isolation conditions]. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii, 10(4), 42-48. [in Russian].

Fabricius, K., Steiniger-Brach, B., Helboe, L., Fink-Jensen, A., & Wörtwein, G. (2011). Socially isolated rats exhibit changes in dopamine homeostasis pertinent to schizophrenia. International journal of developmental neuroscience, 29(3), 347-350. https://doi.org/10.1016/j.ijdevneu.2010.09.003

Zapara, T. A., Romashchenko, A. V., Proskura, A. L., & Ratushnyak, A. S. (2018). Vliyanie fizicheskoi aktivnosti na strukturnuyu asimmetriyu gippokampa myshi [Effect of physical activity on structural asymmetry of mouse hippocampus]. Vavilov Journal of Genetics and Breeding, 22(8), 1084-1089. [in Russian]. https://doi.org/10.18699/VJ18.454

Savitskaya, M. A., Onishchenko, G. E. (2015). Mechanisms of apoptosis. Biochemistry, 80(11), 1393-1405.

Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495-516. https://doi.org/10.1080/01926230701320337

Harmatina, O. Yu., Nosar, V. I., Kolesnikova, E. E., Lapikova-Bryhinska, T. Yu., Gavenauskas, B. L., Bratus, L. V., Mankovska, I. М., & Portnychenko, A. G. (2017). Osobennosti mitokhondrialnoi disfunktsii neironov krys linii Wistar i SHR v usloviyakh modelirovaniya khronicheskoi ishemii golovnogo mozga [Peculiarities of neuron mitochondrial dysfunction in VVistar and SIIR rats under modeling of chronic brain ischemia]. Patolohiia, reabilitatsiia, adaptatsiia, 2017. 15(2), 76-86. [in Russian].

How to Cite

1.
Harmatina OY, Rozova KV, Portnychenko АH. Histological changes in the hippocampus of both cerebral hemispheres of Wistar and SHR rats under experimental chronic cerebral hypoperfusion. Pathologia [Internet]. 2020Dec.29 [cited 2024Dec.23];(3). Available from: http://pat.zsmu.edu.ua/article/view/221868

Issue

Section

Original research