DOI: https://doi.org/10.14739/2310-1237.2020.3.221869

Морфологія кінцевих відділів підщелепної залози щурів при цукровому діабеті

N. S. Tokaruk, O. H. Popadynets, V. I. Bedei, M. I. Hryshchuk, T. L. Kotyk

Анотація


 

Мета роботи – встановити морфологічні зміни серомукозних ацинусів підщелепної залози щурів з експериментальним цукровим діабетом.

Матеріали та методи. Експеримент виконали на однорічних самцях щурів лінії Wistar. Експериментальний цукровий діабет індукували одноразовим внутрішньоочеревинним уведенням стрептозотоцину. Ультраструктурні зміни в серомукоцитних клітинах підщелепної залози вивчали на 14, 42 і 70 добу експерименту.

Результати. У разі експериментального цукрового діабету в серомукоцитах підщелепної залози спостерігали гіпертрофію ендоплазматичного ретикулуму та комплексу  Ґольджі, вакуолізацію цитоплазми, велику кількість внутрішньоклітинних пластинчастих структур і лізосом, дифузну гомогенізацію матриксу, руйнування мітохондріальних крист і вакуолізацію мітохондрій, що були найбільш виражені на 14 день. На 70 день експерименту серомукоцити характеризувалися відсутністю морфологічних ознак пошкодження, спостерігали розвиток атрофії, що підтверджується зменшенням розміру клітин, а також нормалізацією відносної площі секреторних гранул.

Висновки. Результати свідчать, що реакція гландулоцитів серомукозних ацинусів на розвиток гіперглікемії типова та неспецифічна. Альтеративні зміни мають виражений дистрофічний характер на ранніх стадіях і збільшуються до 42 дня експерименту. На 70 добу спостерігали гістологічну адаптацію серомукоцитів, що підтверджується розвитком атрофічних змін, зменшенням площі клітин і нормалізацією відносної площі їхніх гранул.

 


Ключові слова


серомукоцити; слинна залоза; стрептозотоцин; мікроанатомія; патологія

Повний текст:

PDF (English)

Посилання


D’Agostino, C., Elkashty, O. A., Chivasso, C., Perret, J., Tran, S. D., & Delporte, C. (2020). Insight into Salivary Gland Aquaporins. Cells, 9(6), 1547. https://doi.org/10.3390/cells9061547

Sinjari, B., Feragalli, B., Cornelli, U., Belcaro, G., Vitacolonna, E., Santilli, M., Rexhepi, I., D’Addazio, G., Zuccari, F., & Caputi, S. (2020). Artificial Saliva in Diabetic Xerostomia (ASDIX): Double Blind Trial of Aldiamed® Versus Placebo. Journal of Clinical Medicine, 9(7), 2196. https://doi.org/10.3390/jcm9072196

López-Pintor, R. M., Casañas, E., González-Serrano, J., Serrano, J., Ramírez, L., de Arriba, L., & Hernández, G. (2016). Xerostomia, Hyposalivation, and Salivary Flow in Diabetes Patients. Journal of Diabetes Research, 2016, 1-15. https://doi.org/10.1155/2016/4372852

Navea Aguilera, C., Guijarro de Armas, M. G., Monereo Megías, S., Merino Viveros, M., & Torán Ranero, C. (2015). The relationship between xerostomia and diabetes mellitus: A little known complication. Endocrinologia y nutricion, 62(1), 45-46. https://doi.org/10.1016/j.endoen.2014.09.008

Pedersen, A. M. L., Sørensen, C. E., Proctor, G. B., Carpenter, G. H., & Ekström, J. (2018). Salivary secretion in health and disease. Journal of Oral Rehabilitation, 45(9), 730-746. https://doi.org/10.1111/joor.12664

Büttler, R. M., Bagci, E., Brand, H. S., Heijer, M. den, Blankenstein, M. A., & Heijboer, A. C. (2018). Testosterone, androstenedione, cortisol and cortisone levels in human unstimulated, stimulated and parotid saliva. Steroids, 138, 26-34. https://doi.org/10.1016/j.steroids.2018.05.013

Proctor, G. B., & Shaalan, A. K. (2018). Salivary Gland Secretion. In Physiology of the Gastrointestinal Tract (pp. 813-830). Elsevier. https://doi.org/10.1016/B978-0-12-809954-4.00037-2

Araujo, M. V. T., Spadella, M. A., Chies, A. B., Arruda, G. V., Santos, T. M., Cavariani, M. M., & Domeniconi, R. F. (2018). Effect of low radiation dose on the expression and location of aquaporins in rat submandibular gland. Tissue & cell, 53, 104-110. https://doi.org/10.1016/j.tice.2018.06.006

Porcheri, C., & Mitsiadis, T. (2019). Physiology, Pathology and Regeneration of Salivary Glands. Cells, 8(9), 976. https://doi.org/10.3390/cells8090976

Mese, H., & Matsuo, R. (2007). Salivary secretion, taste and hyposalivation. Journal of Oral Rehabilitation, 34(10), 711-723. https://doi.org/10.1111/j.1365-2842.2007.01794.x

Seçil, B. B., Parlak, N., Keleş, O. N., Can, I., Yetim, Z., Toktay, E., Selli, J., & Ünal, B. (2015). Effects of Diabetes on Post-Menopausal Rat Submandibular Glands: A Histopathological and Stereological Examination. The Eurasian Journal of Medicine, 47(3), 199-207. https://doi.org/10.5152/eurasianjmed.2015.80

Anderson, L. C., Suleiman, A. H., & Garrett, J. R. (1994). Morphological effects of diabetes on the granular ducts and acini of the rat submandibular gland. Microscopy Research and Technique, 27(1), 61-70. https://doi.org/10.1002/jemt.1070270105

Noorafshan, A. (2006). Volume-weighted mean volume of the submandibular gland acini in male and female diabetic rats. Micron, 37(7), 613-616. https://doi.org/10.1016/j.micron.2006.03.001

Mednieks, M. I., Szczepanski, A., Clark, B., & Hand, A. R. (2009). Protein expression in salivary glands of rats with streptozotocin diabetes. International Journal of Experimental Pathology, 90(4), 412-422. https://doi.org/10.1111/j.1365-2613.2009.00662.x

Fedirko, N. V., Kruglikov, I. A., Kopach, O. V., Vats, J. A., Kostyuk, P. G., & Voitenko, N. V. (2006). Changes in functioning of rat submandibular salivary gland under streptozotocin-induced diabetes are associated with alterations of Ca2+ signaling and Ca2+ transporting pumps. Biochimica et Biophysica Acta, 1762(3), 294-303. https://doi.org/10.1016/j.bbadis.2005.12.002

Take, G., Ilgaz, C., Erdogan, D., Ozogul, C., & Elmas, C. (2007). A comparative study of the ultrastructure of submandibular, parotid and exocrine pancreas in diabetes and fasting. Saudi medical journal, 28(1), 28-35.

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z

Kotyk, T., Dey, N., Ashour, A. S., Anghel Drugarin, C. V., Gaber, T., Hassanien, A. E., & Snasel, V. (2016). Detection of Dead Stained Microscopic Cells Based on Color Intensity and Contrast. In Advances in Intelligent Systems and Computing (Vol. 407, pp. 57-68). https://doi.org/10.1007/978-3-319-26690-9_6

R Core Team. (2020). R: A Language and Environment for Statistical Computing. https://www.r-project.org/

Fitzpatrick, S. G., & Gordon, S. C. (2018). Cell Injury, Adaptation, and Necrosis. In Apoptosis and Beyond (pp. 83-98). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119432463.ch5

Kumar, V., Abbas, A. K., & Aster, J. C. (2018). Cell Injury, Cell Death, and Adaptations. In Robbins Basic Pathology (10th ed.).

Scridon, A., Perian, M., Marginean, A., Fisca, C., Vantu, A., Ghertescu, D., Chevalier, P., & Serban, R. C. (2015). Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes / Sobolanii Wistar cu diabet zaharat tip 1 indus cu streptozotocina reproduc cele mai . Revista Romana de Medicina de Laborator, 23(3), 263-274. https://doi.org/10.1515/rrlm-2015-0028

Carrizzo, A., Izzo, C., Oliveti, M., Alfano, A., Virtuoso, N., Capunzo, M., Di Pietro, P., Calabrese, M., De Simone, E., Sciarretta, S., Frati, G., Migliarino, S., Damato, A., Ambrosio, M., De Caro, F., & Vecchione, C. (2018). The Main Determinants of Diabetes Mellitus Vascular Complications: Endothelial Dysfunction and Platelet Hyperaggregation. International Journal of Molecular Sciences, 19(10), 2968. https://doi.org/10.3390/ijms19102968

Kotyk, T. (2016). Morphology of the intralobular duct of the submandibular gland in rats in case of experimental diabetes mellitus. Microscopy Research and Technique, 79(12), 1222-1229. https://doi.org/10.1002/jemt.22781

Caldeira, E. J., Camilli, J. A., & Cagnon, V. H. A. (2005). Stereology and ultrastructure of the salivary glands of diabetic Nod mice submitted to long-term insulin treatment. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 286(2), 930-937. https://doi.org/10.1002/ar.a.20236

Tirapelli, L. F., Tirapelli, D. P. C., & Tamega, O. J. (2002). Ultrastructural Alterations In Submandibular Glands Of Rats (Rattus Norvegicus) Submitted To Experimental Chronic Alcoholism. Revista Chilena de Anatomía, 20(1), 1-12. https://doi.org/10.4067/S0716-98682002000100001




ПАТОЛОГІЯ   Лицензия Creative Commons
Запорізький державний медичний університет