Morphology of the submandibular gland’s acini of rats in diabetes mellitus

Authors

DOI:

https://doi.org/10.14739/2310-1237.2020.3.221869

Keywords:

seromucocytes, salivary gland, streptozotocin, microanatomy, pathology

Abstract

 

Aim. The purpose of the study was to determine the morphological changes in seromucous acini of the submandibular gland in experimental rats with diabetes mellitus.

Material and methods. The experiment was performed with 1-year-old male Wistar rats. Experimental diabetes mellitus was induced by a single intraperitoneal administration of streptozotocin. Ultrastructural changes in the seromucous cells of the submandibular gland were studied during the 14th, 42nd and 70th days of the experiment.

Results. In experimental diabetes mellitus in the seromucous cells of the submandibular gland hypertrophy of the rough endoplasmic reticulum and the Golgi complex; vacuolization of the cytoplasm; a large number of intracellular laminated structures and lysosomes; diffuse homogenization of the matrix, destruction of mitochondrial cristae and vacuolization of mitochondria were observed and the most pronounced on the 14th day. On the 70th day of the experiment the seromucous cells are characterized by the absence of morphological signs of damage and the development of atrophy and it is confirmed by the reduction in cells’ size as well as the normalization of the relative area of secretory granules.

Conclusion. The obtained data indicate that the reaction of the cells of seromucous acini to the development of hyperglycemia is typical and nonspecific. Thus, the alternative changes have a pronounced dystrophic character in the early stages and increase to the 42nd day of the experiment. On the 70th day histologic adaptation of the seromucous acini was observed and approved by atrophic changes, decrease of cells’ area and normalization of the relative area of their granules.

 

References

D’Agostino, C., Elkashty, O. A., Chivasso, C., Perret, J., Tran, S. D., & Delporte, C. (2020). Insight into Salivary Gland Aquaporins. Cells, 9(6), 1547. https://doi.org/10.3390/cells9061547

Sinjari, B., Feragalli, B., Cornelli, U., Belcaro, G., Vitacolonna, E., Santilli, M., Rexhepi, I., D’Addazio, G., Zuccari, F., & Caputi, S. (2020). Artificial Saliva in Diabetic Xerostomia (ASDIX): Double Blind Trial of Aldiamed® Versus Placebo. Journal of Clinical Medicine, 9(7), 2196. https://doi.org/10.3390/jcm9072196

López-Pintor, R. M., Casañas, E., González-Serrano, J., Serrano, J., Ramírez, L., de Arriba, L., & Hernández, G. (2016). Xerostomia, Hyposalivation, and Salivary Flow in Diabetes Patients. Journal of Diabetes Research, 2016, 1-15. https://doi.org/10.1155/2016/4372852

Navea Aguilera, C., Guijarro de Armas, M. G., Monereo Megías, S., Merino Viveros, M., & Torán Ranero, C. (2015). The relationship between xerostomia and diabetes mellitus: A little known complication. Endocrinologia y nutricion, 62(1), 45-46. https://doi.org/10.1016/j.endoen.2014.09.008

Pedersen, A. M. L., Sørensen, C. E., Proctor, G. B., Carpenter, G. H., & Ekström, J. (2018). Salivary secretion in health and disease. Journal of Oral Rehabilitation, 45(9), 730-746. https://doi.org/10.1111/joor.12664

Büttler, R. M., Bagci, E., Brand, H. S., Heijer, M. den, Blankenstein, M. A., & Heijboer, A. C. (2018). Testosterone, androstenedione, cortisol and cortisone levels in human unstimulated, stimulated and parotid saliva. Steroids, 138, 26-34. https://doi.org/10.1016/j.steroids.2018.05.013

Proctor, G. B., & Shaalan, A. K. (2018). Salivary Gland Secretion. In Physiology of the Gastrointestinal Tract (pp. 813-830). Elsevier. https://doi.org/10.1016/B978-0-12-809954-4.00037-2

Araujo, M. V. T., Spadella, M. A., Chies, A. B., Arruda, G. V., Santos, T. M., Cavariani, M. M., & Domeniconi, R. F. (2018). Effect of low radiation dose on the expression and location of aquaporins in rat submandibular gland. Tissue & cell, 53, 104-110. https://doi.org/10.1016/j.tice.2018.06.006

Porcheri, C., & Mitsiadis, T. (2019). Physiology, Pathology and Regeneration of Salivary Glands. Cells, 8(9), 976. https://doi.org/10.3390/cells8090976

Mese, H., & Matsuo, R. (2007). Salivary secretion, taste and hyposalivation. Journal of Oral Rehabilitation, 34(10), 711-723. https://doi.org/10.1111/j.1365-2842.2007.01794.x

Seçil, B. B., Parlak, N., Keleş, O. N., Can, I., Yetim, Z., Toktay, E., Selli, J., & Ünal, B. (2015). Effects of Diabetes on Post-Menopausal Rat Submandibular Glands: A Histopathological and Stereological Examination. The Eurasian Journal of Medicine, 47(3), 199-207. https://doi.org/10.5152/eurasianjmed.2015.80

Anderson, L. C., Suleiman, A. H., & Garrett, J. R. (1994). Morphological effects of diabetes on the granular ducts and acini of the rat submandibular gland. Microscopy Research and Technique, 27(1), 61-70. https://doi.org/10.1002/jemt.1070270105

Noorafshan, A. (2006). Volume-weighted mean volume of the submandibular gland acini in male and female diabetic rats. Micron, 37(7), 613-616. https://doi.org/10.1016/j.micron.2006.03.001

Mednieks, M. I., Szczepanski, A., Clark, B., & Hand, A. R. (2009). Protein expression in salivary glands of rats with streptozotocin diabetes. International Journal of Experimental Pathology, 90(4), 412-422. https://doi.org/10.1111/j.1365-2613.2009.00662.x

Fedirko, N. V., Kruglikov, I. A., Kopach, O. V., Vats, J. A., Kostyuk, P. G., & Voitenko, N. V. (2006). Changes in functioning of rat submandibular salivary gland under streptozotocin-induced diabetes are associated with alterations of Ca2+ signaling and Ca2+ transporting pumps. Biochimica et Biophysica Acta, 1762(3), 294-303. https://doi.org/10.1016/j.bbadis.2005.12.002

Take, G., Ilgaz, C., Erdogan, D., Ozogul, C., & Elmas, C. (2007). A comparative study of the ultrastructure of submandibular, parotid and exocrine pancreas in diabetes and fasting. Saudi medical journal, 28(1), 28-35.

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z

Kotyk, T., Dey, N., Ashour, A. S., Anghel Drugarin, C. V., Gaber, T., Hassanien, A. E., & Snasel, V. (2016). Detection of Dead Stained Microscopic Cells Based on Color Intensity and Contrast. In Advances in Intelligent Systems and Computing (Vol. 407, pp. 57-68). https://doi.org/10.1007/978-3-319-26690-9_6

R Core Team. (2020). R: A Language and Environment for Statistical Computing. https://www.r-project.org/

Fitzpatrick, S. G., & Gordon, S. C. (2018). Cell Injury, Adaptation, and Necrosis. In Apoptosis and Beyond (pp. 83-98). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119432463.ch5

Kumar, V., Abbas, A. K., & Aster, J. C. (2018). Cell Injury, Cell Death, and Adaptations. In Robbins Basic Pathology (10th ed.).

Scridon, A., Perian, M., Marginean, A., Fisca, C., Vantu, A., Ghertescu, D., Chevalier, P., & Serban, R. C. (2015). Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes / Sobolanii Wistar cu diabet zaharat tip 1 indus cu streptozotocina reproduc cele mai . Revista Romana de Medicina de Laborator, 23(3), 263-274. https://doi.org/10.1515/rrlm-2015-0028

Carrizzo, A., Izzo, C., Oliveti, M., Alfano, A., Virtuoso, N., Capunzo, M., Di Pietro, P., Calabrese, M., De Simone, E., Sciarretta, S., Frati, G., Migliarino, S., Damato, A., Ambrosio, M., De Caro, F., & Vecchione, C. (2018). The Main Determinants of Diabetes Mellitus Vascular Complications: Endothelial Dysfunction and Platelet Hyperaggregation. International Journal of Molecular Sciences, 19(10), 2968. https://doi.org/10.3390/ijms19102968

Kotyk, T. (2016). Morphology of the intralobular duct of the submandibular gland in rats in case of experimental diabetes mellitus. Microscopy Research and Technique, 79(12), 1222-1229. https://doi.org/10.1002/jemt.22781

Caldeira, E. J., Camilli, J. A., & Cagnon, V. H. A. (2005). Stereology and ultrastructure of the salivary glands of diabetic Nod mice submitted to long-term insulin treatment. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 286(2), 930-937. https://doi.org/10.1002/ar.a.20236

Tirapelli, L. F., Tirapelli, D. P. C., & Tamega, O. J. (2002). Ultrastructural Alterations In Submandibular Glands Of Rats (Rattus Norvegicus) Submitted To Experimental Chronic Alcoholism. Revista Chilena de Anatomía, 20(1), 1-12. https://doi.org/10.4067/S0716-98682002000100001

Downloads

How to Cite

1.
Tokaruk NS, Popadynets OH, Bedei VI, Hryshchuk MI, Kotyk TL. Morphology of the submandibular gland’s acini of rats in diabetes mellitus. Pathologia [Internet]. 2020Dec.29 [cited 2025Jan.23];(3). Available from: http://pat.zsmu.edu.ua/article/view/221869

Issue

Section

Original research