Matrix metallopeptidase 9 and outcome prediction in patients with acute coronary syndrome

Authors

  • A. O. Bilchenko Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine https://orcid.org/0000-0003-3559-3128
  • I. R. Vyshnevska Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine https://orcid.org/0000-0002-6914-3144
  • Ya. V. Hilova Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine https://orcid.org/0000-0002-4545-3009
  • M. P. Kopytsia Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine https://orcid.org/0000-0003-4779-7347

DOI:

https://doi.org/10.14739/2310-1237.2022.2.251670

Keywords:

acute coronary syndrome, MMP-9, outcome, ST elevation myocardial infarction

Abstract

The aim of this review was to analyse the scientific literature data on matrix metallopeptidase 9 and to analyse the available information on its prognostic value as a marker of negative outcome in the short- and long-term prognosis in patients with acute coronary syndrome.

Materials and methods. In our study was used a recursive literature search strategy at PubMed. The following criteria for inclusion in the analysis were defined – a prospective study in patients with acute coronary syndrome that had data on the effect of MMP-9 levels on short-term and/or long-term outcomes, including mortality and major adverse сardiovascular events. Review articles, clinical cases, animal studies, and studies with insignificant statistical data were not included in the analysis. The depth of the initial search was set at 15 years with a search for similar articles in citations. We selected 5 studies for meta-analysis. Meta-Essentials 1.5 was used for the analysis. Odds ratio and 95 % confidence interval were calculated using the Haenszel method. The association between MMP-9 levels and short-term and long-term outcomes (mortality and major adverse CV events) was determined. The statistically significant level was defined as P < 0.05.

Results. The analysis showed no significant association between the level of MMP-9 and the outcome (OR = 1.39; 95 % CI = 0.25–7.79; P = 0.595; I2 = 78 %).

Conclusions. Matrix metallopeptidase 9 is a promising marker for further investigation of its predictive strength of outcome. Despite the opposite results of single studies and no significant association of MMP-9 with outcome further research on this issue is a promising direction.

Author Biographies

A. O. Bilchenko, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv

PhD, Researcher of the Department of Prevention and Treatment of Emergency Conditions

I. R. Vyshnevska, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv

MD, PhD, Senior researcher of the Department of Prevention and Treatment of Emergency Conditions

Ya. V. Hilova, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv

MD, PhD, Researcher of the Department of Prevention and Treatment of Emergency Conditions

M. P. Kopytsia, Government Institution “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv

MD, PhD, DSc, Professor, Head of the Department of Prevention and Treatment of Emergency Conditions

References

Mahmoodi, K., Kamali, K., Karami, E., & Soltanpour, M. S. (2017). Plasma concentration, genetic variation, and gene expression levels of matrix metalloproteinase 9 in Iranian patients with coronary artery disease. Journal of Research in Medical Sciences, 22(1), 8. https://doi.org/10.4103/1735-1995.199088

Hopps, E., & Caimi, G. (2015). Matrix metalloproteases as a pharmacological target in cardiovascular diseases. European review for medical and pharmacological sciences, 19(14), 2583-2589.

Cui, N., Hu, M., & Khalil, R. A. (2017). Biochemical and Biological Attributes of Matrix Metalloproteinases. In Progress in Molecular Biology and Translational Science (Vol. 147, pp. 1-73). Elsevier B.V. https://doi.org/10.1016/bs.pmbts.2017.02.005

Cabral-Pacheco, G. A., Garza-Veloz, I., Rosa, C. C. D. La Ramirez-Acuña, J. M., Perez-Romero, B. A., Guerrero-Rodriguez, J. F., Martinez-Avila, N., & Martinez-Fierro, M. L. (2020). The roles of matrix metalloproteinases and their inhibitors in human diseases. International Journal of Molecular Sciences, 21(24), 9739. https://doi.org/10.3390/ijms21249739

Li, T., Li, X., Feng, Y., Dong, G., Wang, Y., & Yang, J. (2020). The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. In Mediators of Inflammation (Vol. 2020). Hindawi Limited. https://doi.org/10.1155/2020/3872367

Jabłońska-Trypuć, A., Matejczyk, M., & Rosochacki, S. (2016). Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry. Taylor and Francis Ltd. https://doi.org/10.3109/14756366.2016.1161620

Creemers, E. E. J. M., Cleutjens, J. P. M., Smits, J. F. M., & Daemen, M. J. A. P. (2001). Matrix Metalloproteinase Inhibition After Myocardial Infarction. Circulation Research, 89(3), 201-210. https://doi.org/10.1161/hh1501.094396

Kuliczkowski, W., Radomski, M., Gąsior, M., Urbaniak, J., Kaczmarski, J., Mysiak, A., Negrusz-Kawecka, M., & Bil-Lula, I. (2017). MMP-2, MMP-9, and TIMP-4 and Response to Aspirin in Diabetic and Nondiabetic Patients with Stable Coronary Artery Disease: A Pilot Study. BioMed research international, 2017, 9352015. https://doi.org/10.1155/2017/9352015

Chen, C. Y., Chang, F. C., Lee, I. H., & Chung, C. P. (2020). Involvement of matrix metalloproteinase 9 in vertebral arterial dissection with posterior circulation ischemic stroke. Journal of the American Heart Association, 9(19), 016743. https://doi.org/10.1161/JAHA.120.016743

Van den Steen, P. E., Van Aelst, I., Hvidberg, V., Piccard, H., Fiten, P., Jacobsen, C., Moestrup, S. K., Fry, S., Royle, L., Wormald, M. R., Wallis, R., Rudd, P. M., Dwek, R. A., & Opdenakker, G. (2006). The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. The Journal of biological chemistry, 281(27), 18626-18637. https://doi.org/10.1074/jbc.M512308200

Elkins, P. A., Yen, S. H., Smith, W. W., Janson, C. A., D’Alessio, K. J., McQueney, M. S., Cummings, M. D., & Romanic, A. M. (2002). Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase. Acta Crystallographica Section D: Biological Crystallography, 58(7), 1182-1192. https://doi.org/10.1107/S0907444902007849

Vandooren, J., Van den Steen, P. E., & Opdenakker, G. (2013). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Critical reviews in biochemistry and molecular biology, 48(3), 222-272. https://doi.org/10.3109/10409238.2013.770819

Phatharajaree, W., Phrommintikul, A., & Chattipakorn, N. (2007). Matrix metalloproteinases and myocardial infarction. Canadian Journal of Cardiology, 23(9), 727-733. https://doi.org/10.1016/S0828-282X(07)70818-8

Xu, Y., Wang, Y., Zhi, J., Qi, L., Zhang, T., & Li, X. (2017). Impact of matrix metalloproteinase 9 rs3918242 genetic variant on lipid-lowering efficacy of simvastatin therapy in Chinese patients with coronary heart disease. BMC Pharmacology and Toxicology, 18(1), 28. https://doi.org/10.1186/s40360-017-0132-y

Brown, D. L., Hibbs, M. S., Kearney, M., & Isner, J. M. (1997). Differential expression of 92-kDa gelatinase in primary atherosclerotic versus restenotic coronary lesions. American Journal of Cardiology, 79(7), 878-882. https://doi.org/10.1016/S0002-9149(97)00007-6

Jones, C. B., Sane, D. C., & Herrington, D. M. (2003). Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovascular research, 59(4), 812-823. https://doi.org/10.1016/s0008-6363(03)00516-9

Johnson, J. L. (2017). Metalloproteinases in atherosclerosis. European Journal of Pharmacology, 816, 93-106. https://doi.org/10.1016/j.ejphar.2017.09.007

Wang, X., & Khalil, R. A. (2018). Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Advances in pharmacology, 81, 241-330. https://doi.org/10.1016/bs.apha.2017.08.002

Olejarz, W., Łacheta, D., & Kubiak-Tomaszewska, G. (2020). Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. International journal of molecular sciences, 21(11), 3946. https://doi.org/10.3390/ijms21113946

Jiang, X. B., Yuan, W. S., Wang, J. S., Liu, Z., Liu, D. H., & Shi, Z. S. (2014). Matrix metalloproteinase-9 expression in carotid atherosclerotic plaque and contrast-enhanced MRI in a swine model. Journal of NeuroInterventional Surgery, 6(1), 24-28. https://doi.org/10.1136/neurintsurg-2012-010536

Mangge, H., & Almer, G. (2019). Immune-Mediated Inflammation in Vulnerable Atherosclerotic Plaques. Molecules, 24(17), 3072. https://doi.org/10.3390/molecules24173072

Newby, A. C. (2005). Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiological reviews, 85(1), 1-31. https://doi.org/10.1152/physrev.00048.2003

Chen, Y., Waqar, A. B., Nishijima, K., Ning, B., Kitajima, S., Matsuhisa, F., Chen, L., Liu, E., Koike, T., Yu, Y., Zhang, J., Chen, Y. E., Sun, H., Liang, J., & Fan, J. (2020). Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. Journal of Cellular and Molecular Medicine, 24(7), 4261-4274. https://doi.org/10.1111/jcmm.15087

Johnson, J. L. (2007). Matrix metalloproteinases: Influence on smooth muscle cells and atherosclerotic plaque stability. Expert Review of Cardiovascular Therapy, 5(2), 265-282. https://doi.org/10.1586/14779072.5.2.265

Lemaître, V., Kim, H. E., Forney-Prescott, M., Okada, Y., & D’Armiento, J. (2009). Transgenic expression of matrix metalloproteinase-9 modulates collagen deposition in a mouse model of atherosclerosis. Atherosclerosis, 205(1), 107-112. https://doi.org/10.1016/j.atherosclerosis.2008.11.030

Johnson, J. L., George, S. J., Newby, A. C., & Jackson, C. L. (2005). Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15575-15580. https://doi.org/10.1073/pnas.0506201102

Kelly, D., Cockerill, G., Ng, L. L., Thompson, M., Khan, S., Samani, N. J., & Squire, I. B. (2007). Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. European heart journal, 28(6), 711-718. https://doi.org/10.1093/eurheartj/ehm003

Yu, Q., Li, H., Li, L., Wang, S., & Wu, Y. (2015). Correlation between genetic polymorphism of matrix metalloproteinase-9 in patients with coronary artery disease and cardiac remodeling. Pakistan Journal of Medical Sciences, 31(3), 648. https://doi.org/10.12669/PJMS.313.7229

Pyo, R., Lee, J. K., Shipley, J. M., Curci, J. A., Mao, D., Ziporin, S. J., Ennis, T. L., Shapiro, S. D., Senior, R. M., & Thompson, R. W. (2000). Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. Journal of Clinical Investigation, 105(11), 1641-1649. https://doi.org/10.1172/JCI8931

Jin, Z. X., Xiong, Q., Jia, F., Sun, C. L., Zhu, H. T., & Ke, F. S. (2015). Investigation of RNA interference suppression of matrix metalloproteinase-9 in mouse model of atherosclerosis. International journal of clinical and experimental medicine, 8(4), 5272-5278.

Montero, I., Orbe, J., Varo, N., Beloqui, O., Monreal, J. I., Rodréguez, J. A., Díez, J., Libby, P., & Páramo, J. A. (2006). C-reactive protein induces matrix metalloproteinase-1 and -10 in human endothelial cells: Implications for clinical and subclinical atherosclerosis. Journal of the American College of Cardiology, 47(7), 1369-1378. https://doi.org/10.1016/j.jacc.2005.10.070

Gough, P. J., Gomez, I. G., Wille, P. T., & Raines, E. W. (2006). Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. Journal of Clinical Investigation, 116(1), 59-69. https://doi.org/10.1172/JCI25074

Zhu, J. J., Zhao, Q., Qu, H. J., Li, X. M., Chen, Q. J., Liu, F., Chen, B. D., & Yang, Y. N. (2017). Usefulness of plasma matrix metalloproteinase-9 levels in prediction of in-hospital mortality in patients who received emergent percutaneous coronary artery intervention following myocardial infarction. Oncotarget, 8(62), 105809-105818. https://doi.org/10.18632/oncotarget.22401

Somuncu, M. U., Pusuroglu, H., Karakurt, H., Bolat, İ., Karakurt, S. T., Demir, A. R., Isıksacan, N., Akgul, O., & Surgit, O. (2020). The prognostic value of elevated matrix metalloproteinase-9 in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction: A two-year prospective study. Revista Portuguesa de Cardiologia, 39(5), 267-276. https://doi.org/10.1016/j.repc.2019.09.011

Wang, K. F., Huang, P. H., Chiang, C. H., Hsu, C. Y., Leu, H. B., Chen, J. W., & Lin, S. J. (2013). Usefulness of plasma matrix metalloproteinase-9 level in predicting future coronary revascularization in patients after acute myocardial infarction. Coronary Artery Disease, 24(1), 23-28. https://doi.org/10.1097/MCA.0b013e32835aab4a

Kobayashi, N., Takano, M., Hata, N., Kume, N., Tsurumi, M., Shirakabe, A., Okazaki, H., Shibuya, J., Shiomura, R., Nishigoori, S., Seino, Y., & Shimizu, W. (2016). Matrix metalloproteinase-9 as a marker for plaque rupture and a predictor of adverse clinical outcome in patients with acute coronary syndrome: An optical coherence tomography study. Cardiology, 135(1), 56-65. https://doi.org/10.1159/000445994

Apple, F. S., Pearce, L. A., Chung, A., Ler, R., & Murakami, M. A. M. (2007). Multiple biomarker use for detection of adverse events in patients presenting with symptoms suggestive of acute coronary syndrome. Clinical Chemistry, 53(5), 874-881. https://doi.org/10.1373/clinchem.2006.080192

Lahdentausta, L., Leskelä, J., Winkelmann, A., Tervahartiala, T., Sorsa, T., Pesonen, E., & Pussinen, P. J. (2018). Serum MMP-9 Diagnostics, Prognostics, and Activation in Acute Coronary Syndrome and Its Recurrence. Journal of Cardiovascular Translational Research, 11(3), 210-220. https://doi.org/10.1007/s12265-018-9789-x

Opstad, T. B., Seljeflot, I., Bøhmer, E., Arnesen, H., & Halvorsen, S. (2018). MMP-9 and Its Regulators TIMP-1 and EMMPRIN in Patients with Acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology, 139(1), 17-24. https://doi.org/10.1159/000481684

El-Aziz, T. A. A., & Mohamed, R. H. (2017). Matrix metalloproteinase -9 polymorphism and outcome after acute myocardial infarction. International Journal of Cardiology, 227, 524-528. https://doi.org/10.1016/j.ijcard.2016.10.109

Hamed, G. M., & Fattah, M. F. A. (2015). Clinical Relevance of Matrix Metalloproteinase 9 in Patients with Acute Coronary Syndrome. Clinical and Applied Thrombosis/Hemostasis, 21(8), 750-754. https://doi.org/10.1177/1076029614567309

Tan, J., Hua, Q., Gao, J., & Zhen, X. F. (2008). Clinical implications of elevated serum interleukin-6, soluble CD40 ligand, metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in patients with acute ST-segment elevation myocardial infarction. Clinical Cardiology, 31(9), 413-418. https://doi.org/10.1002/clc.20254

Tan, J., Hua, Q., Li, J., & Fan, Z. (2009). Prognostic value of interleukin-6 during a 3-year follow-up in patients with acute ST-segment elevation myocardial infarction. Heart and Vessels, 24(5), 329-334. https://doi.org/10.1007/s00380-008-1128-8

Dhillon, O. S., Khan, S. Q., Narayan, H. K., Ng, K. H., Mohammed, N., Quinn, P. A., Squire, I. B., Davies, J. E., & Ng, L. L. (2010). Matrix metalloproteinase-2 predicts mortality in patients with acute coronary syndrome. Clinical Science, 118(4), 249-257. https://doi.org/10.1042/CS20090226

Brügger-Andersen, T., Aarsetøy, H., Grundt, H., Staines, H., & Nilsen, D. W. T. (2008). The long-term prognostic value of multiple biomarkers following a myocardial infarction. Thrombosis Research, 123(1), 60-66. https://doi.org/10.1016/j.thromres.2008.01.012

Giansante, C., Fiotti, N., Di Chiara, A., Altamura, N., Wasserman, S., Fioretti, P., & Guarnieri, G. (2007). In-hospital outcome of patients with acute coronary syndrome: Relationship with inflammation and remodeling markers. Journal of Cardiovascular Medicine, 8(8), 602–607. https://doi.org/10.2459/JCM.0b013e32802e6c28

Dominguez-Rodriguez, A., Abreu-Gonzalez, P., Garcia-Gonzalez, M. J., & Kaski, J. C. (2008). High serum matrix metalloproteinase-9 level predict increased risk of in-hospital cardiac events in patients with type 2 diabetes and ST segment elevation myocardial infarction. Atherosclerosis, 196(1), 365-371. https://doi.org/10.1016/j.atherosclerosis.2006.11.012

Jordakieva, G., Budge-Wolfram, R. M., Budinsky, A. C., Nikfardjam, M., Delle-Karth, G., Girard, A., Godnic-Cvar, J., Crevenna, R., & Heinz, G. (2021). Plasma MMP-9 and TIMP-1 levels on ICU admission are associated with 30-day survival. Wiener Klinische Wochenschrift, 133(3-4), 86-95. https://doi.org/10.1007/s00508-019-01592-x

Ezhov, M., Safarova, M., Afanasieva, O., Mitroshkin, M., Matchin, Y., & Pokrovsky, S. (2019). Matrix metalloproteinase 9 as a predictor of coronary atherosclerotic plaque instability in stable coronary heart disease patients with elevated Lipoprotein(a) levels. Biomolecules, 9(4), 129. https://doi.org/10.3390/biom9040129

Popović, S., Canović, F., Ilić, M., Rafajlovski, S., Dimitrijević-Srećković, V., Matanović, D., Vujović, S., Djordjević, P., & Gostiljac, D. (2015). Indeks matriks metaloproteinaze-9 kao mogući parametar predviđanja akutnog koronarnog sindroma kod dijabetičara. Vojnosanitetski Pregled, 72(5), 421-426. https://doi.org/10.2298/VSP140204055P

Kook, H., Jang, D. H., Kim, J. H., Cho, J. Y., Joo, H. J., Cho, S. A., Park, J. H., Hong, S. J., Yu, C. W., & Lim, D. S. (2020). Identification of plaque ruptures using a novel discriminative model comprising biomarkers in patients with acute coronary syndrome. Scientific Reports, 10(1), 20228. https://doi.org/10.1038/s41598-020-77413-3

Miksztowicz, V., Morales, C., Zago, V., Friedman, S., Schreier, L., & Berg, G. (2014). Effect of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9 activity in rats fed a sucrose-rich diet. Nutrition, Metabolism and Cardiovascular Diseases, 24(3), 294-300. https://doi.org/10.1016/j.numecd.2013.08.007

Garcia-Fernandez, N., Jacobs-Cachá, C., Mora-Gutiérrez, J. M., Vergara, A., Orbe, J., & Soler, M. J. (2020). Matrix Metalloproteinases in Diabetic Kidney Disease. Journal of clinical medicine, 9(2), 472. https://doi.org/10.3390/jcm9020472

Aljada, A., Ghanim, H., Mohanty, P., Syed, T., Bandyopadhyay, A., & Dandona, P. (2004). Glucose intake induces an increase in activator protein 1 and early growth response 1 binding activities, in the expression of tissue factor and matrix metalloproteinase in mononuclear cells, and in plasma tissue factor and matrix metalloproteinase concen. American Journal of Clinical Nutrition, 80(1), 51-57. https://doi.org/10.1093/ajcn/80.1.51

Peng, Z., Nguyen, T. T., Song, W., Anderson, B., Wolter, W. R., Schroeder, V. A., Hesek, D., Lee, M., Mobashery, S., & Chang, M. (2021). Selective MMP-9 Inhibitor (R)-ND-336 Alone or in Combination with Linezolid Accelerates Wound Healing in Infected Diabetic Mice. ACS Pharmacology and Translational Science, 4(1), 107-117. https://doi.org/10.1021/acsptsci.0c00104

Rodríguez-Sánchez, E., Navarro-García, J. A., Aceves-Ripoll, J., Álvarez-Llamas, G., Segura, J., Barderas, M. G., Ruilope, L. M., & Ruiz-Hurtado, G. (2019). Association between renal dysfunction and metalloproteinase (MMP)-9 activity in hypertensive patients. Nefrologia, 39(2), 184-191. https://doi.org/10.1016/j.nefroe.2019.03.006

Dong, M., Mu, N., Ren, F., Li, F., Zhang, C., & Yang, J. (2015). Matrix metalloproteinase-9 in the culprit coronary artery and myocardial no-reflow. American Journal of the Medical Sciences, 350(5), 352-356. https://doi.org/10.1097/MAJ.0000000000000559

Kuliczkowski, W., Urbaniak, J., Hallén, J., Woźniak, M., Poloński, L., Mysiak, A., Atar, D., Zembala, M., & Serebruany, V. (2013). Matrix metalloproteinases and the activity of their tissue inhibitors in patients with ST-elevation myocardial infarction treated with primary angioplasty. Kardiologia Polska, 71(5), 453-463. https://doi.org/10.5603/KP.2013.0091

Chen, X., Meng, Y., Shao, M., Zhang, T., Han, L., Zhang, W., Zhang, H., Hai, H., & Li, G. (2020). Prognostic Value of Pre-Infarction Angina Combined with Mean Platelet Volume to Lymphocyte Count Ratio for No-Reflow and Short-Term Mortality in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Medical science monitor, 26, e919300. https://doi.org/10.12659/MSM.919300

Cogni, A. L., Farah, E., Minicucci, M. F., Azevedo, P. S., Okoshi, K., Matsubara, B. B., Zanati, S., Haggeman, R., Paiva, S. A. R., & Zornoff, L. A. M. (2013). Metalloproteinases-2 and -9 predict left ventricular remodeling after myocardial infarction. Arquivos Brasileiros de Cardiologia, 100(4), 315-321. https://doi.org/10.5935/abc.20130049

Downloads

Published

2022-08-22

How to Cite

1.
Bilchenko AO, Vyshnevska IR, Hilova YV, Kopytsia MP. Matrix metallopeptidase 9 and outcome prediction in patients with acute coronary syndrome. Pathologia [Internet]. 2022Aug.22 [cited 2024Apr.26];19(2):128-34. Available from: http://pat.zsmu.edu.ua/article/view/251670

Issue

Section

Review