Results of dynamic monitoring of the spectrum of bacterial causes of acute urinary tract infections in children

Authors

DOI:

https://doi.org/10.14739/2310-1237.2022.3.259108

Keywords:

children, urinary tract infections, antibiotic resistance

Abstract

The aim of the study: to explore in dynamics the structure of pathogens in children of Zaporizhzhia region with acute urinary tract infections and the possible changes in their antibiotic susceptibility.

Materials and methods. We analysed results of urine culture in 439 children aged 4 to 18 years with acute urinary tract infection (293 patients in 2014–2016 and 146 patients in 2018–2020). Determination of bacterial species and susceptibility to antibiotics was performed on a bacteriological analyzer VITEK 2 COMPACT (bioMerieux, France) using AES software: Global CLSI-based + Phenotypic (2014, 2018) in accordance with CLSI and EUCAST tables. The coefficient of antibiotic resistance was additionally calculated for each isolate.

Results. According to the analysis of bacteriological monitoring, it was found that in 2018–2020 compared to 2014–2016 among the causative agents of acute urinary tract infections in children, the role of gram-negative bacteria had raised due to increasing the proportion of Escherichia сoli and Proteus mirabilis. Gram-positive microflora has been represented by bacteria of the genus Enterococcus, in 2018–2020 in most samples was isolated Enterococcus faecium (28.1 %), in 2014–2016 among the representatives Enterococcus faecalis prevailed (38.9 %).

The analysis of antibiotic resistance showed that in 2018–2020 the number of resistant strains of E. coli to amikacin increased 6.8 times to 2014–2016 (Р < 0.01) and there was a decrease in the sensitivity of Enterococcus to aminopenicillins from 91.4 % to 41.3 % (P < 0.01). Among bacteria of the genus Enterococcus the average values of the coefficient of resistance to antibiotics in 2018–2020 increased 3.75 times compared to 2014–2016 due to a 2.3-fold increase in the frequency of multidrug-resistant strains (P < 0.05).

Conclusions. The obtained data are convincing evidence of the need for mandatory bacteriological examination of urine before antibacterial therapy to increase the effectiveness of therapeutic measures, prevention of the emergence and spread of antibiotic resistance. An increase in resistance of E. coli to amikacin and Enterococcus spp. to ampicillin does not allow the use of these drugs as empirical therapy of acute urinary tract infections in children.

Author Biographies

H. O. Lezhenko, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Head of the Department of Hospital Pediatrics

O. Ye. Pashkova, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Professor of the Department of Hospital Pediatrics

K. V. Samoylyk, Zaporizhzhia State Medical University, Ukraine

MD, PhD, Assistant of the Department of Hospital Pediatrics

References

Petca, R. C., Popescu, R. I., Mares, C., Petca, A., Mehedintu, C., Sandu, I., & Maru, N. (2019). Antibiotic resistance profile of common uropathogens implicated in urinary tract infections in Romania. Farmacia, 67(6), 994-1004. https://doi.org/10.31925/farmacia.2019.6.9

Kaufman, J., Temple-Smith, M., & Sanci, L. (2019). Urinary tract infections in children: an overview of diagnosis and management. BMJ paediatrics open, 3(1). e000487. https://doi.org/10.1136/bmjpo-2019-000487

Rosello, A., Pouwels, K. B., De Cellès, M. D., Van Kleef, E., Hayward, A. C., Hopkins, S., & Deeny, S. R. (2018). Seasonality of urinary tract infections in the United Kingdom in different age groups: longitudinal analysis of The Health Improvement Network (THIN). Epidemiology & Infection, 146(1), 37-45. https://doi.org/10.1017/S095026881700259X

Esposito, S., Biasucci, G., Pasini, A., Predieri, B., Vergine, G., Crisafi, A., Malaventura, C., Casadio, L., Sella, M., Pierantoni, L., Gatti, C., Paglialonga, L., Sodini, C., La Scola, C., Bernardi, L., Autore, G., Canto, G. D., Argentiero, A., Cantatore, S., Ceccoli, M., … Iughetti, L. (2022). Antibiotic Resistance in Paediatric Febrile Urinary Tract Infections. Journal of global antimicrobial resistance, 29, 499-506. https://doi.org/10.1016/j.jgar.2021.11.003

EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam, the Netherlands 2022. ISBN 978-94-92671-16-5

The European Committee on Antimicrobial Susceptibility Testing. (n.d.). Expert rules and expected phenotypes. https://www.eucast.org/expert_rules_and_expected_phenotypes/

The European Committee on Antimicrobial Susceptibility Testing. (2020). Clinical breakpoint tables for interpretation of MICs and zone diameters.

Weinstein, M. P., Mirrett, S., Kannangara, S., Monahan, J., Harrell, L. J., Wilson, A. C., & Reller, L. B. (2004). Multicenter evaluation of use of penicillin and ampicillin as surrogates for in vitro testing of susceptibility of enterococci to imipenem. Journal of clinical microbiology, 42(8), 3747-3751. https://doi.org/10.1128/JCM.42.8.3747-3751.2004

Firoozeh, F., Saffari, M., Neamati, F., & Zibaei, M. (2014). Detection of virulence genes in Escherichia coli isolated from patients with cystitis and pyelonephritis. International journal of infectious diseases : IJID, 29, 219-222. https://doi.org/10.1016/j.ijid.2014.03.1393

Egorov, A. M., Ulyashova, M. M., & Rubtsova, M. Y. (2018). Bacterial Enzymes and Antibiotic Resistance. Acta naturae, 10(4), 33-48.

Ranjbar, R., Zeynali, M., Sohrabi, N., Kamboh, A. A., & Moshaveri, A. (2018). Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from hospital wastewater. Universa Medicina, 37(3), 209-215. https://doi.org/10.18051/univmed.2018.v37.209-215

Sugathan, S., & Mandal, J. (2019). An invitro experimental study of the effect of fosfomycin in combination with amikacin, ciprofloxacin or meropenem on biofilm formation by multidrug-resistant urinary isolates of Escherichia coli. Journal of Medical Microbiology, 68(12), 1699-1706. https://doi.org/10.1099/jmm.0.001061

Mancini, S., Marchesi, M., Imkamp, F., Wagner, K., Keller, P. M., Quiblier, C., Bodendoerfer, E., Courvalin, P., & Böttger, E. C. (2019). Population-based inference of aminoglycoside resistance mechanisms in Escherichia coli. EBioMedicine, 46, 184-192. https://doi.org/10.1016/j.ebiom.2019.07.020

Haggag, Y. A. E. G., Saafan, A. E., El-Gendy, A. O., Hefzy, E. M., & AbdelGhani, S. (2020). Molecular Characterization of Quinolone Resistant Urinary Isolates of Escherichia coli. Journal of Pure and Applied Microbiology, 14(2), 1269-1278.

Lorestani, R. C., Akya, A., & Elahi, A. (2018). The mutations of topoisomerase genes and their effect on resistance to fluoroquinolones in extended-spectrum β-lactamase-producing Escherichia coli. Jundishapur Journal of Natural Pharmaceutical Products, 13(1). https://doi.org/10.5812/jjnpp.57964

Conwell, M., Dooley, J. S. G., & Naughton, P. J. (2022). Enterococcal biofilm-A nidus for antibiotic resistance transfer?. Journal of applied microbiology, 132(5), 3444-3460. https://doi.org/10.1111/jam.15441

De Rosa, F. G., Corcione, S., Pagani, N., & Di Perri, G. (2015). From ESKAPE to ESCAPE, from KPC to CCC. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 60(8), 1289-1290. https://doi.org/10.1093/cid/ciu1170

Flores-Treviño, S., Garza-González, E., Mendoza-Olazarán, S., Morfín-Otero, R., Camacho-Ortiz, A., Rodríguez-Noriega, E., Martínez-Meléndez, A., & Bocanegra-Ibarias, P. (2019). Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. Scientific reports, 9(1), 18945. https://doi.org/10.1038/s41598-019-55430-1

Tandogdu, Z., Cek, M., Wagenlehner, F., Naber, K., Tenke, P., van Ostrum, E., & Bjerklund Johansen, T. (2014). Resistance patterns of nosocomial urinary tract infections in urology departments: 8-year results of the global prevalence of infections in urology study. World Journal of Urology, 32(3), 791-801. https://doi.org/10.1007/s00345-013-1154-8

Cattoir, V., & Giard, J. C. (2014). Antibiotic resistance in Enterococcus faecium clinical isolates. Expert review of anti-infective therapy, 12(2), 239-248. https://doi.org/10.1586/14787210.2014.870886

World Health Organization (WHO). (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.quotidianosanita.it/allegati/allegato4135670.pdf

Remschmidt, C., Schröder, C., Behnke, M., Gastmeier, P., Geffers, C., & Kramer, T. S. (2018). Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany - 10 years of surveillance. Antimicrobial resistance and infection control, 7, 54. https://doi.org/10.1186/s13756-018-0353-x

Melese, A., Genet, C., & Andualem, T. (2020). Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: a systematic review and meta-analysis. BMC infectious diseases, 20(1), 124. https://doi.org/10.1186/s12879-020-4833-2

Raza, T., Ullah, S. R., Mehmood, K., & Andleeb, S. (2018). Vancomycin resistant Enterococci: A brief review. JPMA. The Journal of the Pakistan Medical Association, 68(5), 768-772.

Selim, S. (2022). Mechanisms of gram-positive vancomycin resistance (Review). Biomedical reports, 16(1), 7. https://doi.org/10.3892/br.2021.1490

Amberpet, R., Sistla, S., Parija, S. C., & Thabah, M. M. (2016). Screening for Intestinal Colonization with Vancomycin Resistant Enterococci and Associated Risk Factors among Patients Admitted to an Adult Intensive Care Unit of a Large Teaching Hospital. Journal of clinical and diagnostic research : JCDR, 10(9), DC06-DC09. https://doi.org/10.7860/JCDR/2016/20562.8418

Szajewska, H., Guarino, A., Hojsak, I., Indrio, F., Kolacek, S., Shamir, R., Vandenplas, Y., Weizman, Z., & European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (2014). Use of probiotics for management of acute gastroenteritis: a position paper by the ESPGHAN Working Group for Probiotics and Prebiotics. Journal of pediatric gastroenterology and nutrition, 58(4), 531-539. https://doi.org/10.1097/MPG.0000000000000320

Takesue, Y., Kusachi, S., Mikamo, H., Sato, J., Watanabe, A., Kiyota, H., Iwata, S., Kaku, M., Hanaki, H., Sumiyama, Y., Kitagawa, Y., Nakajima, K., Ueda, T., Uchino, M., Mizuguchi, T., Ambo, Y., Konosu, M., Ishibashi, K., Matsuda, A., Hase, K., … Yanagihara, K. (2018). Antimicrobial susceptibility of common pathogens isolated from postoperative intra-abdominal infections in Japan. Journal of infection and chemotherapy, 24(5), 330-340. https://doi.org/10.1016/j.jiac.2018.02.011

Khan, I. U., Mirza, I. A., Ikram, A., Afzal, A., Ali, S., Hussain, A., Fayyaz, M., & Ghafoor, T. (2014). Antimicrobial susceptibility pattern of bacteria isolated from patients with urinary tract infection. Journal of the College of Physicians and Surgeons--Pakistan : JCPSP, 24(11), 840-844.

Guo, L., Yin, D., Guo, Y., Zheng, Y., Shi, Q., Yang, Y., Zhu, D., & Hu, F. (2019). Evaluation study of using ampicillin susceptibility to predict imipenem susceptibility of E. faecalis and E. faecium. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.2.14272/v1

Conceição, N., Rodrigues, W. F., de Oliveira, K. L. P., da Silva, L. E. P., de Souza, L. R. C., da de Cunha Hueb Barata Oliveira, C., & de Oliveira, A. G. (2020). Beta-lactams susceptibility testing of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis isolates: a comparative assessment of Etest and disk diffusion methods against broth dilution. Annals of clinical microbiology and antimicrobials, 19(1), 43. https://doi.org/10.1186/s12941-020-00386-8

Gagetti, P., Bonofiglio, L., Gabarrot, G. G., Kaufman, S., Mollerach, M., Vigliarolo, L., von Specht M., Toresani I., & Lopardo H. (2019). Resistencia a los β -lactámicos en enterococos TT - Resistance to β-lactams in enterococci. Revista Argentina de microbiologia, 51(2), 179-183. https://doi.org/10.1016/j.ram.2018.01.007

Gawryszewska, I., Żabicka, D., Hryniewicz, W., & Sadowy, E. (2021). Penicillin-Resistant, Ampicillin-Susceptible Enterococcus faecalis in Polish Hospitals. Microbial drug resistance (Larchmont, N.Y.), 27(3), 291-300. https://doi.org/10.1089/mdr.2019.0504

Rice, L. B., Desbonnet, C., Tait-Kamradt, A., Garcia-Solache, M., Lonks, J., Moon, T. M., D'Andréa, É. D., Page, R., & Peti, W. (2018). Structural and Regulatory Changes in PBP4 Trigger Decreased β-Lactam Susceptibility in Enterococcus faecalis. mBio, 9(2), e00361-18. https://doi.org/10.1128/mBio.00361-18

Downloads

Published

2023-01-27

How to Cite

1.
Lezhenko HO, Pashkova OY, Samoylyk KV. Results of dynamic monitoring of the spectrum of bacterial causes of acute urinary tract infections in children. Pathologia [Internet]. 2023Jan.27 [cited 2024Sep.9];19(3):221-6. Available from: http://pat.zsmu.edu.ua/article/view/259108

Issue

Section

Original research