Prospects for the sulfur-containing amino acids medicines usage for trimethylamine-N-oxide biosynthesis modulation in humans

Authors

DOI:

https://doi.org/10.14739/2310-1237.2022.3.263564

Keywords:

trimethylamine, trimethylamine oxide, gastrointestinal microbiome, aminoacids sulfur

Abstract

The aim: to identify prospects for the sulfur-containing amino acids medicines usage for trimethylamine oxide (TMAO) biosynthesis modulation in humans.

Intestinal microbiome and its metabolic products are currently widely discussed as a new therapeutic target for the treatment of cardiovascular, neurological and metabolic diseases. The effect of the intestinal microbiome on human health is unconditional. Its metabolites, including trimethylamine (TMA), TMAO and plasma amino acids, play an important role in the mechanisms of many diseases. The synthesis of TMAO directly depends on such factors as diet, intestinal microbiome status, genetic characteristics of the human body (activity and type of hepatic flavin monooxygenase). At the same time, all these factors are also able to affect the metabolism of sulfur-containing amino acids in the human body. Conversely, sulfur-containing amino acids are able to simulate the state of the intestinal microbiome and the activity of hepatic flavin monooxygenase. Today many sulfur-containing amino acid drugs are widely used in therapeutic practice (taurine, methionine, glutathione), including for the cardiovascular and metabolic diseases treatment. Their effect on the state of the intestinal microbiome and its metabolites is still unexplored. There are currently no strong clinical studies for the use of amino acid preparations to reduce plasma TMAO levels, although this perspective is interesting. The possibility of using taurine is questionable as it affects the state of the intestinal microbiome in ultra-high doses (more than 3 g/day), which can cause side effects. Glutathione drugs have low bioavailability due to its physical and chemical properties, and therefore have not become widespread in therapeutic practice. Drugs that activate glutathione synthesis – for example, selenium derivatives, glutoredoxins, some heat shock proteins (HPS70) actions are not studied in vivo enough. Unfortunately, methionine preparations, on the other hand, increase plasma TMAO levels.

Conclusions. Despite the deep pathogenetic affinity of sulfur-containing amino acids and TMAO synthesis, the prospect of using these amino acids drugs to reduce TMAO synthesis is questionable. The problem of reducing the synthesis of TMAO in the human body remains unsolved and requires further search for promising pathogenetically drugs for its correction.

Author Biographies

I. O. Melnychuk, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, Assistant of the Department of Internal Medicine 4

M. L. Sharaieva, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, Associate Professor of the Department of Internal Medicine 4

V. N. Kramarova, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, DSc, Professor of the Department of Internal Medicine 4

V. H. Lyzohub, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Internal Medicine 4

References

Aledo, J. C. (2019). Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein science : a publication of the Protein Society, 28(10), 1785-1796. https://doi.org/10.1002/pro.3698

Baliou, S., Adamaki, M., Ioannou, P., Pappa, A., Panayiotidis, M. I., Spandidos, D. A., Christodoulou, I., Kyriakopoulos, A. M., & Zoumpourlis, V. (2021). Protective role of taurine against oxidative stress (Review). Molecular medicine reports, 24(2), 605. https://doi.org/10.3892/mmr.2021.12242

Bjørklund, G., Tinkov, A. A., Hosnedlová, B., Kizek, R., Ajsuvakova, O. P., Chirumbolo, S., Skalnaya, M. G., Peana, M., Dadar, M., El-Ansary, A., Qasem, H., Adams, J. B., Aaseth, J., & Skalny, A. V. (2020). The role of glutathione redox imbalance in autism spectrum disorder: A review. Free radical biology & medicine, 160, 149-162. https://doi.org/10.1016/j.freeradbiomed.2020.07.017

Cai, Z., Zhang, J., & Li, H. (2019). Selenium, aging and aging-related diseases. Aging clinical and experimental research, 31(8), 1035-1047. https://doi.org/10.1007/s40520-018-1086-7

Deng, Y., Zhou, Q., Wu, Y., Chen, X., & Zhong, F. (2022). Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. International journal of molecular sciences, 23(5), 2622. https://doi.org/10.3390/ijms23052622

Elkafrawy, H., Mehanna, R., Ali, F., Barghash, A., Dessouky, I., Jernerén, F., Turner, C., Refsum, H., & Elshorbagy, A. (2021). Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults. Amino acids, 53(10), 1623-1634. https://doi.org/10.1007/s00726-021-03071-y

Hassan, F. U., Guo, Y., Li, M., Tang, Z., Peng, L., Liang, X., & Yang, C. (2021). Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate. Microorganisms, 9(8), 1717. https://doi.org/10.3390/microorganisms9081717

Fernández-Fernández, M. R., & Valpuesta, J. M. (2018). Hsp70 chaperone: a master player in protein homeostasis. F1000Research, 7, F1000 Faculty Rev-1497. https://doi.org/10.12688/f1000research.15528.1

Fu, Y., Wang, X., & Kong, W. (2018). Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. British journal of pharmacology, 175(8), 1173-1189. https://doi.org/10.1111/bph.13988

Garcia, E., Wolak-Dinsmore, J., Wang, Z., Li, X. S., Bennett, D. W., Connelly, M. A., Otvos, J. D., Hazen, S. L., & Jeyarajah, E. J. (2017). NMR quantification of trimethylamine-N-oxide in human serum and plasma in the clinical laboratory setting. Clinical biochemistry, 50(16-17), 947-955. https://doi.org/10.1016/j.clinbiochem.2017.06.003

Glorieux, G., Gryp, T., & Perna, A. (2020). Gut-derived metabolites and their role in immune dysfunction in chronic kidney disease. Toxins, 12(4), 245. https://doi.org/10.3390/toxins12040245

Han, D., Huang, M., Wang, T., Li, Z., Chen, Y., Liu, C., Lei, Z., & Chu, X. (2019). Lysine methylation of transcription factors in cancer. Cell death & disease, 10(4), 290. https://doi.org/10.1038/s41419-019-1524-2

Hashimoto, K. (2014). Targeting of NMDA receptors in new treatments for schizophrenia. Expert opinion on therapeutic targets, 18(9), 1049-1063. https://doi.org/10.1517/14728222.2014.934225

Ho, K. T., Homma, K., Takanari, J., Bai, H., Kawahara, M., Nguyen, K. T. K., & Takahashi, M. (2021). A standardized extract of Asparagus officinalis stem improves HSP70-mediated redox balance and cell functions in bovine cumulus-granulosa cells. Scientific reports, 11(1), 18175. https://doi.org/10.1038/s41598-021-97632-6

Huang, K. H., Chang, C. C., Ho, J. D., Lu, R. H., & Tsai, L. H. (2011). Role of taurine on acid secretion in the rat stomach. Journal of biomedical science, 18(1), 11. https://doi.org/10.1186/1423-0127-18-11

Huang, P., Huang, Y., Lv, B., Zhang, H., Liu, J., Yang, G., Tao, Y., Bu, D., Wang, G., Du, J., & Jin, H. (2021). Endogenous Taurine Downregulation Is Required for Renal Injury in Salt-Sensitive Hypertensive Rats via CBS/H2S Inhibition. Oxidative medicine and cellular longevity, 2021, 5530907. https://doi.org/10.1155/2021/5530907

Janeiro, M. H., Ramírez, M. J., Milagro, F. I., Martínez, J. A., & Solas, M. (2018). Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10(10), 1398. https://doi.org/10.3390/nu10101398

Wu, J. H., & Batist, G. (2013). Glutathione and glutathione analogues; therapeutic potentials. Biochimica et biophysica acta, 1830(5), 3350-3353. https://doi.org/10.1016/j.bbagen.2012.11.016

Kiełczykowska, M., Kocot, J., Paździor, M., & Musik, I. (2018). Selenium - a fascinating antioxidant of protective properties. Advances in clinical and experimental medicine, 27(2), 245-255. https://doi.org/10.17219/acem/67222

Koeth, R. A., Lam-Galvez, B. R., Kirsop, J., Wang, Z., Levison, B. S., Gu, X., Copeland, M. F., Bartlett, D., Cody, D. B., Dai, H. J., Culley, M. K., Li, X. S., Fu, X., Wu, Y., Li, L., DiDonato, J. A., Tang, W. H. W., Garcia-Garcia, J. C., & Hazen, S. L. (2019). l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. The Journal of clinical investigation, 129(1), 373-387. https://doi.org/10.1172/JCI94601

Krueger, E. S., Beales, J. L., Russon, K. B., Elison, W. S., Davis, J. R., Hansen, J. M., Neilson, A. P., Hansen, J. M., & Tessem, J. S. (2021). Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules, 11(12), 1892. https://doi.org/10.3390/biom11121892

Kwon, N., Lim, C. S., Lee, D., Ko, G., Ha, J., Cho, M., Swamy, K. M. K., Lee, E. Y., Lee, D. J., Nam, S. J., Zhou, X., Kim, H. M., & Yoon, J. (2022). A coumarin-based reversible two-photon fluorescence probe for imaging glutathione near N-methyl-D-aspartate (NMDA) receptors. Chemical communications, 58(22), 3633-3636. https://doi.org/10.1039/d1cc05512g

Lyzohub, V. H., Kramarova, V. N., & Melnychuk, I. O. (2019). Rol zmin mikrobioty kyshkivnyka v patohenezi sertsevo-sudynnykh zakhvoriuvan (ohliad literatury) [Role of intestinal microbiota changes in cardiovascular diseases pathogenesis]. Zaporozhye medical journal, 21(5), 672-678. [in Ukrainian]. https://doi.org/10.14739/2310-1210.2019.5.179462

Lurz, E., Horne, R. G., Määttänen, P., Wu, R. Y., Botts, S. R., Li, B., Rossi, L., Johnson-Henry, K. C., Pierro, A., Surette, M. G., & Sherman, P. M. (2020). Vitamin B12 Deficiency Alters the Gut Microbiota in a Murine Model of Colitis. Frontiers in nutrition, 7, 83. https://doi.org/10.3389/fnut.2020.00083

Ma, D., Wang, L., Xu, C., Yue, L., Zhang, J., & Hao, J. (2022). Effect of L-carnitine on left ventricular remodeling and cardiac function after PCI in patients with acute myocardial infarction. Minerva surgery, 77(4), 403-406. https://doi.org/10.23736/S2724-5691.21.09194-2

Mahn, A. V., Toledo, H. M., & Ruz, M. (2009). Dietary supplementation with selenomethylselenocysteine produces a differential proteomic response. The Journal of nutritional biochemistry, 20(10), 791-799. https://doi.org/10.1016/j.jnutbio.2008.07.008

Mazdeh, M., Abolfathi, P., Sabetghadam, M., Mohammadi, Y., & Mehrpooya, M. (2022). Clinical Evidence of Acetyl-L-Carnitine Efficacy in the Treatment of Acute Ischemic Stroke: A Pilot Clinical Trial. Oxidative medicine and cellular longevity, 2022, 2493053. https://doi.org/10.1155/2022/2493053

Minich, D. M., & Brown, B. I. (2019). A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients, 11(9), 2073. https://doi.org/10.3390/nu11092073

Mohammadi, M., Hajhossein Talasaz, A., & Alidoosti, M. (2016). Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation. Clinical nutrition ESPEN, 15, 1-10. https://doi.org/10.1016/j.clnesp.2016.06.009

Ogata, F. T., Branco, V., Vale, F. F., & Coppo, L. (2021). Glutaredoxin: Discovery, redox defense and much more. Redox biology, 43, 101975. https://doi.org/10.1016/j.redox.2021.101975

Ogra, Y., & Takahashi, K. (2021). [Roles of Gut Microflora in Selenium Metabolism of Host Animals]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 141(5), 689-693. https://doi.org/10.1248/yakushi.20-00243-4

Papandreou, C., Moré, M., & Bellamine, A. (2020). Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect?. Nutrients, 12(5), 1330. https://doi.org/10.3390/nu12051330

Parkhitko, A. A., Jouandin, P., Mohr, S. E., & Perrimon, N. (2019). Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging cell, 18(6), e13034. https://doi.org/10.1111/acel.13034

Richie, J. P., Jr, Nichenametla, S., Neidig, W., Calcagnotto, A., Haley, J. S., Schell, T. D., & Muscat, J. E. (2015). Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. European journal of nutrition, 54(2), 251-263. https://doi.org/10.1007/s00394-014-0706-z

Rom, O., Liu, Y., Liu, Z., Zhao, Y., Wu, J., Ghrayeb, A., Villacorta, L., Fan, Y., Chang, L., Wang, L., Liu, C., Yang, D., Song, J., Rech, J. C., Guo, Y., Wang, H., Zhao, G., Liang, W., Koike, Y., Lu, H., … Chen, Y. E. (2020). Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science translational medicine, 12(572), eaaz2841. https://doi.org/10.1126/scitranslmed.aaz2841

Rossner, R., Kaeberlein, M., & Leiser, S. F. (2017). Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. The Journal of biological chemistry, 292(27), 11138-11146. https://doi.org/10.1074/jbc.R117.779678

Sasaki, K., Sasaki, D., Okai, N., Tanaka, K., Nomoto, R., Fukuda, I., Yoshida, K. I., Kondo, A., & Osawa, R. (2017). Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PloS one, 12(7), e0180991. https://doi.org/10.1371/journal.pone.0180991

Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., Wu, Y., & Hazen, S. L. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England journal of medicine, 368(17), 1575-1584. https://doi.org/10.1056/NEJMoa1109400

Toohey J. I. (2014). Sulfur amino acids in diet-induced fatty liver: a new perspective based on recent findings. Molecules, 19(6), 8334-8349. https://doi.org/10.3390/molecules19068334

Wang, Z., Ma, P., Wang, Y., Hou, B., Zhou, C., Tian, H., Li, B., Shui, G., Yang, X., Qiang, G., Yin, C., & Du, G. (2021). Untargeted metabolomics and transcriptomics identified glutathione metabolism disturbance and PCS and TMAO as potential biomarkers for ER stress in lung. Scientific reports, 11(1), 14680. https://doi.org/10.1038/s41598-021-92779-8

Wang, F., Zhou, H., Deng, L., Wang, L., Chen, J., & Zhou, X. (2020). Serine Deficiency Exacerbates Inflammation and Oxidative Stress via Microbiota-Gut-Brain Axis in D-Galactose-Induced Aging Mice. Mediators of inflammation, 2020, 5821428. https://doi.org/10.1155/2020/5821428

Wiedeman, A. M., Barr, S. I., Green, T. J., Xu, Z., Innis, S. M., & Kitts, D. D. (2018). Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients, 10(10), 1513. https://doi.org/10.3390/nu10101513

Wu, X., Zhang, L., Miao, Y., Yang, J., Wang, X., Wang, C. C., Feng, J., & Wang, L. (2019). Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox biology, 20, 46-59. https://doi.org/10.1016/j.redox.2018.09.021

Yang, Y., Zhang, Y., Xu, Y., Luo, T., Ge, Y., Jiang, Y., Shi, Y., Sun, J., & Le, G. (2019). Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food & function, 10(9), 5952-5968. https://doi.org/10.1039/c9fo00766k

Yoo, W., Zieba, J. K., Foegeding, N. J., Torres, T. P., Shelton, C. D., Shealy, N. G., Byndloss, A. J., Cevallos, S. A., Gertz, E., Tiffany, C. R., Thomas, J. D., Litvak, Y., Nguyen, H., Olsan, E. E., Bennett, B. J., Rathmell, J. C., Major, A. S., Bäumler, A. J., & Byndloss, M. X. (2021). High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science, 373(6556), 813-818. https://doi.org/10.1126/science.aba3683

Yu, S., Guo, H., Luo, Y., & Chen, H. (2021). Ozone protects cardiomyocytes against ischemia/reperfusion injury: Regulating the heat shock protein 70 (HPS70) expression through activating the JAK2/STAT3 Pathway. Bioengineered, 12(1), 6606-6616. https://doi.org/10.1080/21655979.2021.1974760

Zhao, G., He, F., Wu, C., Li, P., Li, N., Deng, J., Zhu, G., Ren, W., & Peng, Y. (2018). Betaine in Inflammation: Mechanistic Aspects and Applications. Frontiers in immunology, 9, 1070. https://doi.org/10.3389/fimmu.2018.01070

Published

2023-01-27

How to Cite

1.
Melnychuk IO, Sharaieva ML, Kramarova VN, Lyzohub VH. Prospects for the sulfur-containing amino acids medicines usage for trimethylamine-N-oxide biosynthesis modulation in humans. Pathologia [Internet]. 2023Jan.27 [cited 2024Sep.9];19(3):247-55. Available from: http://pat.zsmu.edu.ua/article/view/263564

Issue

Section

Review