Prospects for the sulfur-containing amino acids medicines usage for trimethylamine-N-oxide biosynthesis modulation in humans
DOI:
https://doi.org/10.14739/2310-1237.2022.3.263564Keywords:
trimethylamine, trimethylamine oxide, gastrointestinal microbiome, aminoacids sulfurAbstract
The aim: to identify prospects for the sulfur-containing amino acids medicines usage for trimethylamine oxide (TMAO) biosynthesis modulation in humans.
Intestinal microbiome and its metabolic products are currently widely discussed as a new therapeutic target for the treatment of cardiovascular, neurological and metabolic diseases. The effect of the intestinal microbiome on human health is unconditional. Its metabolites, including trimethylamine (TMA), TMAO and plasma amino acids, play an important role in the mechanisms of many diseases. The synthesis of TMAO directly depends on such factors as diet, intestinal microbiome status, genetic characteristics of the human body (activity and type of hepatic flavin monooxygenase). At the same time, all these factors are also able to affect the metabolism of sulfur-containing amino acids in the human body. Conversely, sulfur-containing amino acids are able to simulate the state of the intestinal microbiome and the activity of hepatic flavin monooxygenase. Today many sulfur-containing amino acid drugs are widely used in therapeutic practice (taurine, methionine, glutathione), including for the cardiovascular and metabolic diseases treatment. Their effect on the state of the intestinal microbiome and its metabolites is still unexplored. There are currently no strong clinical studies for the use of amino acid preparations to reduce plasma TMAO levels, although this perspective is interesting. The possibility of using taurine is questionable as it affects the state of the intestinal microbiome in ultra-high doses (more than 3 g/day), which can cause side effects. Glutathione drugs have low bioavailability due to its physical and chemical properties, and therefore have not become widespread in therapeutic practice. Drugs that activate glutathione synthesis – for example, selenium derivatives, glutoredoxins, some heat shock proteins (HPS70) actions are not studied in vivo enough. Unfortunately, methionine preparations, on the other hand, increase plasma TMAO levels.
Conclusions. Despite the deep pathogenetic affinity of sulfur-containing amino acids and TMAO synthesis, the prospect of using these amino acids drugs to reduce TMAO synthesis is questionable. The problem of reducing the synthesis of TMAO in the human body remains unsolved and requires further search for promising pathogenetically drugs for its correction.
References
Aledo, J. C. (2019). Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein science : a publication of the Protein Society, 28(10), 1785-1796. https://doi.org/10.1002/pro.3698
Baliou, S., Adamaki, M., Ioannou, P., Pappa, A., Panayiotidis, M. I., Spandidos, D. A., Christodoulou, I., Kyriakopoulos, A. M., & Zoumpourlis, V. (2021). Protective role of taurine against oxidative stress (Review). Molecular medicine reports, 24(2), 605. https://doi.org/10.3892/mmr.2021.12242
Bjørklund, G., Tinkov, A. A., Hosnedlová, B., Kizek, R., Ajsuvakova, O. P., Chirumbolo, S., Skalnaya, M. G., Peana, M., Dadar, M., El-Ansary, A., Qasem, H., Adams, J. B., Aaseth, J., & Skalny, A. V. (2020). The role of glutathione redox imbalance in autism spectrum disorder: A review. Free radical biology & medicine, 160, 149-162. https://doi.org/10.1016/j.freeradbiomed.2020.07.017
Cai, Z., Zhang, J., & Li, H. (2019). Selenium, aging and aging-related diseases. Aging clinical and experimental research, 31(8), 1035-1047. https://doi.org/10.1007/s40520-018-1086-7
Deng, Y., Zhou, Q., Wu, Y., Chen, X., & Zhong, F. (2022). Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. International journal of molecular sciences, 23(5), 2622. https://doi.org/10.3390/ijms23052622
Elkafrawy, H., Mehanna, R., Ali, F., Barghash, A., Dessouky, I., Jernerén, F., Turner, C., Refsum, H., & Elshorbagy, A. (2021). Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults. Amino acids, 53(10), 1623-1634. https://doi.org/10.1007/s00726-021-03071-y
Hassan, F. U., Guo, Y., Li, M., Tang, Z., Peng, L., Liang, X., & Yang, C. (2021). Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate. Microorganisms, 9(8), 1717. https://doi.org/10.3390/microorganisms9081717
Fernández-Fernández, M. R., & Valpuesta, J. M. (2018). Hsp70 chaperone: a master player in protein homeostasis. F1000Research, 7, F1000 Faculty Rev-1497. https://doi.org/10.12688/f1000research.15528.1
Fu, Y., Wang, X., & Kong, W. (2018). Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. British journal of pharmacology, 175(8), 1173-1189. https://doi.org/10.1111/bph.13988
Garcia, E., Wolak-Dinsmore, J., Wang, Z., Li, X. S., Bennett, D. W., Connelly, M. A., Otvos, J. D., Hazen, S. L., & Jeyarajah, E. J. (2017). NMR quantification of trimethylamine-N-oxide in human serum and plasma in the clinical laboratory setting. Clinical biochemistry, 50(16-17), 947-955. https://doi.org/10.1016/j.clinbiochem.2017.06.003
Glorieux, G., Gryp, T., & Perna, A. (2020). Gut-derived metabolites and their role in immune dysfunction in chronic kidney disease. Toxins, 12(4), 245. https://doi.org/10.3390/toxins12040245
Han, D., Huang, M., Wang, T., Li, Z., Chen, Y., Liu, C., Lei, Z., & Chu, X. (2019). Lysine methylation of transcription factors in cancer. Cell death & disease, 10(4), 290. https://doi.org/10.1038/s41419-019-1524-2
Hashimoto, K. (2014). Targeting of NMDA receptors in new treatments for schizophrenia. Expert opinion on therapeutic targets, 18(9), 1049-1063. https://doi.org/10.1517/14728222.2014.934225
Ho, K. T., Homma, K., Takanari, J., Bai, H., Kawahara, M., Nguyen, K. T. K., & Takahashi, M. (2021). A standardized extract of Asparagus officinalis stem improves HSP70-mediated redox balance and cell functions in bovine cumulus-granulosa cells. Scientific reports, 11(1), 18175. https://doi.org/10.1038/s41598-021-97632-6
Huang, K. H., Chang, C. C., Ho, J. D., Lu, R. H., & Tsai, L. H. (2011). Role of taurine on acid secretion in the rat stomach. Journal of biomedical science, 18(1), 11. https://doi.org/10.1186/1423-0127-18-11
Huang, P., Huang, Y., Lv, B., Zhang, H., Liu, J., Yang, G., Tao, Y., Bu, D., Wang, G., Du, J., & Jin, H. (2021). Endogenous Taurine Downregulation Is Required for Renal Injury in Salt-Sensitive Hypertensive Rats via CBS/H2S Inhibition. Oxidative medicine and cellular longevity, 2021, 5530907. https://doi.org/10.1155/2021/5530907
Janeiro, M. H., Ramírez, M. J., Milagro, F. I., Martínez, J. A., & Solas, M. (2018). Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10(10), 1398. https://doi.org/10.3390/nu10101398
Wu, J. H., & Batist, G. (2013). Glutathione and glutathione analogues; therapeutic potentials. Biochimica et biophysica acta, 1830(5), 3350-3353. https://doi.org/10.1016/j.bbagen.2012.11.016
Kiełczykowska, M., Kocot, J., Paździor, M., & Musik, I. (2018). Selenium - a fascinating antioxidant of protective properties. Advances in clinical and experimental medicine, 27(2), 245-255. https://doi.org/10.17219/acem/67222
Koeth, R. A., Lam-Galvez, B. R., Kirsop, J., Wang, Z., Levison, B. S., Gu, X., Copeland, M. F., Bartlett, D., Cody, D. B., Dai, H. J., Culley, M. K., Li, X. S., Fu, X., Wu, Y., Li, L., DiDonato, J. A., Tang, W. H. W., Garcia-Garcia, J. C., & Hazen, S. L. (2019). l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. The Journal of clinical investigation, 129(1), 373-387. https://doi.org/10.1172/JCI94601
Krueger, E. S., Beales, J. L., Russon, K. B., Elison, W. S., Davis, J. R., Hansen, J. M., Neilson, A. P., Hansen, J. M., & Tessem, J. S. (2021). Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules, 11(12), 1892. https://doi.org/10.3390/biom11121892
Kwon, N., Lim, C. S., Lee, D., Ko, G., Ha, J., Cho, M., Swamy, K. M. K., Lee, E. Y., Lee, D. J., Nam, S. J., Zhou, X., Kim, H. M., & Yoon, J. (2022). A coumarin-based reversible two-photon fluorescence probe for imaging glutathione near N-methyl-D-aspartate (NMDA) receptors. Chemical communications, 58(22), 3633-3636. https://doi.org/10.1039/d1cc05512g
Lyzohub, V. H., Kramarova, V. N., & Melnychuk, I. O. (2019). Rol zmin mikrobioty kyshkivnyka v patohenezi sertsevo-sudynnykh zakhvoriuvan (ohliad literatury) [Role of intestinal microbiota changes in cardiovascular diseases pathogenesis]. Zaporozhye medical journal, 21(5), 672-678. [in Ukrainian]. https://doi.org/10.14739/2310-1210.2019.5.179462
Lurz, E., Horne, R. G., Määttänen, P., Wu, R. Y., Botts, S. R., Li, B., Rossi, L., Johnson-Henry, K. C., Pierro, A., Surette, M. G., & Sherman, P. M. (2020). Vitamin B12 Deficiency Alters the Gut Microbiota in a Murine Model of Colitis. Frontiers in nutrition, 7, 83. https://doi.org/10.3389/fnut.2020.00083
Ma, D., Wang, L., Xu, C., Yue, L., Zhang, J., & Hao, J. (2022). Effect of L-carnitine on left ventricular remodeling and cardiac function after PCI in patients with acute myocardial infarction. Minerva surgery, 77(4), 403-406. https://doi.org/10.23736/S2724-5691.21.09194-2
Mahn, A. V., Toledo, H. M., & Ruz, M. (2009). Dietary supplementation with selenomethylselenocysteine produces a differential proteomic response. The Journal of nutritional biochemistry, 20(10), 791-799. https://doi.org/10.1016/j.jnutbio.2008.07.008
Mazdeh, M., Abolfathi, P., Sabetghadam, M., Mohammadi, Y., & Mehrpooya, M. (2022). Clinical Evidence of Acetyl-L-Carnitine Efficacy in the Treatment of Acute Ischemic Stroke: A Pilot Clinical Trial. Oxidative medicine and cellular longevity, 2022, 2493053. https://doi.org/10.1155/2022/2493053
Minich, D. M., & Brown, B. I. (2019). A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients, 11(9), 2073. https://doi.org/10.3390/nu11092073
Mohammadi, M., Hajhossein Talasaz, A., & Alidoosti, M. (2016). Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation. Clinical nutrition ESPEN, 15, 1-10. https://doi.org/10.1016/j.clnesp.2016.06.009
Ogata, F. T., Branco, V., Vale, F. F., & Coppo, L. (2021). Glutaredoxin: Discovery, redox defense and much more. Redox biology, 43, 101975. https://doi.org/10.1016/j.redox.2021.101975
Ogra, Y., & Takahashi, K. (2021). [Roles of Gut Microflora in Selenium Metabolism of Host Animals]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 141(5), 689-693. https://doi.org/10.1248/yakushi.20-00243-4
Papandreou, C., Moré, M., & Bellamine, A. (2020). Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect?. Nutrients, 12(5), 1330. https://doi.org/10.3390/nu12051330
Parkhitko, A. A., Jouandin, P., Mohr, S. E., & Perrimon, N. (2019). Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging cell, 18(6), e13034. https://doi.org/10.1111/acel.13034
Richie, J. P., Jr, Nichenametla, S., Neidig, W., Calcagnotto, A., Haley, J. S., Schell, T. D., & Muscat, J. E. (2015). Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. European journal of nutrition, 54(2), 251-263. https://doi.org/10.1007/s00394-014-0706-z
Rom, O., Liu, Y., Liu, Z., Zhao, Y., Wu, J., Ghrayeb, A., Villacorta, L., Fan, Y., Chang, L., Wang, L., Liu, C., Yang, D., Song, J., Rech, J. C., Guo, Y., Wang, H., Zhao, G., Liang, W., Koike, Y., Lu, H., … Chen, Y. E. (2020). Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science translational medicine, 12(572), eaaz2841. https://doi.org/10.1126/scitranslmed.aaz2841
Rossner, R., Kaeberlein, M., & Leiser, S. F. (2017). Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. The Journal of biological chemistry, 292(27), 11138-11146. https://doi.org/10.1074/jbc.R117.779678
Sasaki, K., Sasaki, D., Okai, N., Tanaka, K., Nomoto, R., Fukuda, I., Yoshida, K. I., Kondo, A., & Osawa, R. (2017). Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PloS one, 12(7), e0180991. https://doi.org/10.1371/journal.pone.0180991
Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., Wu, Y., & Hazen, S. L. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England journal of medicine, 368(17), 1575-1584. https://doi.org/10.1056/NEJMoa1109400
Toohey J. I. (2014). Sulfur amino acids in diet-induced fatty liver: a new perspective based on recent findings. Molecules, 19(6), 8334-8349. https://doi.org/10.3390/molecules19068334
Wang, Z., Ma, P., Wang, Y., Hou, B., Zhou, C., Tian, H., Li, B., Shui, G., Yang, X., Qiang, G., Yin, C., & Du, G. (2021). Untargeted metabolomics and transcriptomics identified glutathione metabolism disturbance and PCS and TMAO as potential biomarkers for ER stress in lung. Scientific reports, 11(1), 14680. https://doi.org/10.1038/s41598-021-92779-8
Wang, F., Zhou, H., Deng, L., Wang, L., Chen, J., & Zhou, X. (2020). Serine Deficiency Exacerbates Inflammation and Oxidative Stress via Microbiota-Gut-Brain Axis in D-Galactose-Induced Aging Mice. Mediators of inflammation, 2020, 5821428. https://doi.org/10.1155/2020/5821428
Wiedeman, A. M., Barr, S. I., Green, T. J., Xu, Z., Innis, S. M., & Kitts, D. D. (2018). Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients, 10(10), 1513. https://doi.org/10.3390/nu10101513
Wu, X., Zhang, L., Miao, Y., Yang, J., Wang, X., Wang, C. C., Feng, J., & Wang, L. (2019). Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox biology, 20, 46-59. https://doi.org/10.1016/j.redox.2018.09.021
Yang, Y., Zhang, Y., Xu, Y., Luo, T., Ge, Y., Jiang, Y., Shi, Y., Sun, J., & Le, G. (2019). Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food & function, 10(9), 5952-5968. https://doi.org/10.1039/c9fo00766k
Yoo, W., Zieba, J. K., Foegeding, N. J., Torres, T. P., Shelton, C. D., Shealy, N. G., Byndloss, A. J., Cevallos, S. A., Gertz, E., Tiffany, C. R., Thomas, J. D., Litvak, Y., Nguyen, H., Olsan, E. E., Bennett, B. J., Rathmell, J. C., Major, A. S., Bäumler, A. J., & Byndloss, M. X. (2021). High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science, 373(6556), 813-818. https://doi.org/10.1126/science.aba3683
Yu, S., Guo, H., Luo, Y., & Chen, H. (2021). Ozone protects cardiomyocytes against ischemia/reperfusion injury: Regulating the heat shock protein 70 (HPS70) expression through activating the JAK2/STAT3 Pathway. Bioengineered, 12(1), 6606-6616. https://doi.org/10.1080/21655979.2021.1974760
Zhao, G., He, F., Wu, C., Li, P., Li, N., Deng, J., Zhu, G., Ren, W., & Peng, Y. (2018). Betaine in Inflammation: Mechanistic Aspects and Applications. Frontiers in immunology, 9, 1070. https://doi.org/10.3389/fimmu.2018.01070
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (SeeThe Effect of Open Access).