Перспективи впливу застосування препаратів сірковмісних амінокислот на біосинтез триметиламін-N-оксиду в організмі людини

Автор(и)

  • І. О. Мельничук Національний медичний університет імені О. О. Богомольця, м. Київ, Україна, Ukraine https://orcid.org/0000-0002-0659-1476
  • М. Л. Шараєва Національний медичний університет імені О. О. Богомольця, м. Київ, Україна, Ukraine https://orcid.org/0000-0002-8891-7336
  • В. Н. Крамарьова Національний медичний університет імені О. О. Богомольця, м. Київ, Україна, Ukraine https://orcid.org/0000-0003-2978-3320
  • В. Г. Лизогуб Національний медичний університет імені О. О. Богомольця, м. Київ, Україна, Ukraine https://orcid.org/0000-0003-3603-7342

DOI:

https://doi.org/10.14739/2310-1237.2022.3.263564

Ключові слова:

триметиламін, триметиламіноксид, сірковмісні амінокислоти, мікробіом кишківника

Анотація

Мета роботи – з’ясувати перспективи застосування препаратів сірковмісних амінокислот на біосинтез триметиламіноксиду (ТМАО) в організмі людини.

Мікробіом кишківника та продукти його обміну досліджують як нову терапевтичну мішень для лікування серцево-судинних, неврологічних і метаболічних захворювань. Безумовним є вплив мікробіому кишківника на здоров’я людини. Саме його метаболіти, зокрема триметиламін (ТМА), ТМАО та амінокислоти плазми, відіграють важливу роль у механізмах виникнення багатьох захворювань. Синтез ТМАО прямо залежить від таких факторів, як дієта, стан мікробіому кишківника, генетичні особливості людського організму (активність і вид печінкової флавінмонооксигенази). Водночас всі ці фактори можуть впливати на обмін сірковмісних амінокислот в організмі людини. І навпаки, сірковмісні амінокислоти здатні моделювати стан мікробіому кишківника й активність печінкової флавінмонооксигенази.

Нині чимало препаратів сірковмісних амінокислот широко використовують у терапевтичній практиці (таурин, метіонін, глутатіон), зокрема для метаболічної корекції багатьох серцево-судинних і метаболічних захворювань. Їхній вплив на стан мікробіому кишківника та його метаболітів вивчено недостатньо. До цього часу не здійснили масштабні клінічні дослідження щодо застосування препаратів амінокислот для зменшення рівня ТМАО плазми, хоча ця перспектива є цікавою. Можливість використання таурину сумнівна, оскільки він впливає на стан мікробіому кишківника в надвисоких дозах (понад 3 г/добу), що можуть спричиняти побічні ефекти. Препарати глутатіону відрізняються низькою біодоступністю через його фізико-хімічні властивості, тому і не набули поширення в терапевтичній практиці. Засоби, що потенціюють синтез глутатіону, як-от препарати селену (через активацію глутатіонредуктази), глуторедоксини, деякі білки теплового шоку (HPS70), недостатньо вивчено in vivo. Препарати метіоніну, на жаль, збільшують рівень ТМАО плазми.

Висновки. Незважаючи на глибоку патогенетичну спорідненість обміну сірковмісних амінокислот і синтезу ТМАО, перспектива застосування препаратів цих амінокислот для зниження синтезу ТМАО є сумнівною. Проблема зниження синтезу ТМАО в організмі людини залишається невирішеною, потребує продовження пошуку перспективних патогенетично обґрунтованих медичних засобів корекції.

Біографії авторів

І. О. Мельничук, Національний медичний університет імені О. О. Богомольця, м. Київ, Україна

асистент каф. внутрішньої медицини 4

М. Л. Шараєва, Національний медичний університет імені О. О. Богомольця, м. Київ, Україна

канд. мед. наук, доцент каф. внутрішньої медицини № 4

В. Н. Крамарьова, Національний медичний університет імені О. О. Богомольця, м. Київ, Україна

д-р мед. наук, професор каф. внутрішньої медицини № 4

В. Г. Лизогуб, Національний медичний університет імені О. О. Богомольця, м. Київ, Україна

д-р мед. наук, професор, зав. каф. внутрішньої медицини № 4

Посилання

Aledo, J. C. (2019). Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein science : a publication of the Protein Society, 28(10), 1785-1796. https://doi.org/10.1002/pro.3698

Baliou, S., Adamaki, M., Ioannou, P., Pappa, A., Panayiotidis, M. I., Spandidos, D. A., Christodoulou, I., Kyriakopoulos, A. M., & Zoumpourlis, V. (2021). Protective role of taurine against oxidative stress (Review). Molecular medicine reports, 24(2), 605. https://doi.org/10.3892/mmr.2021.12242

Bjørklund, G., Tinkov, A. A., Hosnedlová, B., Kizek, R., Ajsuvakova, O. P., Chirumbolo, S., Skalnaya, M. G., Peana, M., Dadar, M., El-Ansary, A., Qasem, H., Adams, J. B., Aaseth, J., & Skalny, A. V. (2020). The role of glutathione redox imbalance in autism spectrum disorder: A review. Free radical biology & medicine, 160, 149-162. https://doi.org/10.1016/j.freeradbiomed.2020.07.017

Cai, Z., Zhang, J., & Li, H. (2019). Selenium, aging and aging-related diseases. Aging clinical and experimental research, 31(8), 1035-1047. https://doi.org/10.1007/s40520-018-1086-7

Deng, Y., Zhou, Q., Wu, Y., Chen, X., & Zhong, F. (2022). Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. International journal of molecular sciences, 23(5), 2622. https://doi.org/10.3390/ijms23052622

Elkafrawy, H., Mehanna, R., Ali, F., Barghash, A., Dessouky, I., Jernerén, F., Turner, C., Refsum, H., & Elshorbagy, A. (2021). Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults. Amino acids, 53(10), 1623-1634. https://doi.org/10.1007/s00726-021-03071-y

Hassan, F. U., Guo, Y., Li, M., Tang, Z., Peng, L., Liang, X., & Yang, C. (2021). Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate. Microorganisms, 9(8), 1717. https://doi.org/10.3390/microorganisms9081717

Fernández-Fernández, M. R., & Valpuesta, J. M. (2018). Hsp70 chaperone: a master player in protein homeostasis. F1000Research, 7, F1000 Faculty Rev-1497. https://doi.org/10.12688/f1000research.15528.1

Fu, Y., Wang, X., & Kong, W. (2018). Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. British journal of pharmacology, 175(8), 1173-1189. https://doi.org/10.1111/bph.13988

Garcia, E., Wolak-Dinsmore, J., Wang, Z., Li, X. S., Bennett, D. W., Connelly, M. A., Otvos, J. D., Hazen, S. L., & Jeyarajah, E. J. (2017). NMR quantification of trimethylamine-N-oxide in human serum and plasma in the clinical laboratory setting. Clinical biochemistry, 50(16-17), 947-955. https://doi.org/10.1016/j.clinbiochem.2017.06.003

Glorieux, G., Gryp, T., & Perna, A. (2020). Gut-derived metabolites and their role in immune dysfunction in chronic kidney disease. Toxins, 12(4), 245. https://doi.org/10.3390/toxins12040245

Han, D., Huang, M., Wang, T., Li, Z., Chen, Y., Liu, C., Lei, Z., & Chu, X. (2019). Lysine methylation of transcription factors in cancer. Cell death & disease, 10(4), 290. https://doi.org/10.1038/s41419-019-1524-2

Hashimoto, K. (2014). Targeting of NMDA receptors in new treatments for schizophrenia. Expert opinion on therapeutic targets, 18(9), 1049-1063. https://doi.org/10.1517/14728222.2014.934225

Ho, K. T., Homma, K., Takanari, J., Bai, H., Kawahara, M., Nguyen, K. T. K., & Takahashi, M. (2021). A standardized extract of Asparagus officinalis stem improves HSP70-mediated redox balance and cell functions in bovine cumulus-granulosa cells. Scientific reports, 11(1), 18175. https://doi.org/10.1038/s41598-021-97632-6

Huang, K. H., Chang, C. C., Ho, J. D., Lu, R. H., & Tsai, L. H. (2011). Role of taurine on acid secretion in the rat stomach. Journal of biomedical science, 18(1), 11. https://doi.org/10.1186/1423-0127-18-11

Huang, P., Huang, Y., Lv, B., Zhang, H., Liu, J., Yang, G., Tao, Y., Bu, D., Wang, G., Du, J., & Jin, H. (2021). Endogenous Taurine Downregulation Is Required for Renal Injury in Salt-Sensitive Hypertensive Rats via CBS/H2S Inhibition. Oxidative medicine and cellular longevity, 2021, 5530907. https://doi.org/10.1155/2021/5530907

Janeiro, M. H., Ramírez, M. J., Milagro, F. I., Martínez, J. A., & Solas, M. (2018). Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10(10), 1398. https://doi.org/10.3390/nu10101398

Wu, J. H., & Batist, G. (2013). Glutathione and glutathione analogues; therapeutic potentials. Biochimica et biophysica acta, 1830(5), 3350-3353. https://doi.org/10.1016/j.bbagen.2012.11.016

Kiełczykowska, M., Kocot, J., Paździor, M., & Musik, I. (2018). Selenium - a fascinating antioxidant of protective properties. Advances in clinical and experimental medicine, 27(2), 245-255. https://doi.org/10.17219/acem/67222

Koeth, R. A., Lam-Galvez, B. R., Kirsop, J., Wang, Z., Levison, B. S., Gu, X., Copeland, M. F., Bartlett, D., Cody, D. B., Dai, H. J., Culley, M. K., Li, X. S., Fu, X., Wu, Y., Li, L., DiDonato, J. A., Tang, W. H. W., Garcia-Garcia, J. C., & Hazen, S. L. (2019). l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. The Journal of clinical investigation, 129(1), 373-387. https://doi.org/10.1172/JCI94601

Krueger, E. S., Beales, J. L., Russon, K. B., Elison, W. S., Davis, J. R., Hansen, J. M., Neilson, A. P., Hansen, J. M., & Tessem, J. S. (2021). Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules, 11(12), 1892. https://doi.org/10.3390/biom11121892

Kwon, N., Lim, C. S., Lee, D., Ko, G., Ha, J., Cho, M., Swamy, K. M. K., Lee, E. Y., Lee, D. J., Nam, S. J., Zhou, X., Kim, H. M., & Yoon, J. (2022). A coumarin-based reversible two-photon fluorescence probe for imaging glutathione near N-methyl-D-aspartate (NMDA) receptors. Chemical communications, 58(22), 3633-3636. https://doi.org/10.1039/d1cc05512g

Lyzohub, V. H., Kramarova, V. N., & Melnychuk, I. O. (2019). Rol zmin mikrobioty kyshkivnyka v patohenezi sertsevo-sudynnykh zakhvoriuvan (ohliad literatury) [Role of intestinal microbiota changes in cardiovascular diseases pathogenesis]. Zaporozhye medical journal, 21(5), 672-678. [in Ukrainian]. https://doi.org/10.14739/2310-1210.2019.5.179462

Lurz, E., Horne, R. G., Määttänen, P., Wu, R. Y., Botts, S. R., Li, B., Rossi, L., Johnson-Henry, K. C., Pierro, A., Surette, M. G., & Sherman, P. M. (2020). Vitamin B12 Deficiency Alters the Gut Microbiota in a Murine Model of Colitis. Frontiers in nutrition, 7, 83. https://doi.org/10.3389/fnut.2020.00083

Ma, D., Wang, L., Xu, C., Yue, L., Zhang, J., & Hao, J. (2022). Effect of L-carnitine on left ventricular remodeling and cardiac function after PCI in patients with acute myocardial infarction. Minerva surgery, 77(4), 403-406. https://doi.org/10.23736/S2724-5691.21.09194-2

Mahn, A. V., Toledo, H. M., & Ruz, M. (2009). Dietary supplementation with selenomethylselenocysteine produces a differential proteomic response. The Journal of nutritional biochemistry, 20(10), 791-799. https://doi.org/10.1016/j.jnutbio.2008.07.008

Mazdeh, M., Abolfathi, P., Sabetghadam, M., Mohammadi, Y., & Mehrpooya, M. (2022). Clinical Evidence of Acetyl-L-Carnitine Efficacy in the Treatment of Acute Ischemic Stroke: A Pilot Clinical Trial. Oxidative medicine and cellular longevity, 2022, 2493053. https://doi.org/10.1155/2022/2493053

Minich, D. M., & Brown, B. I. (2019). A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients, 11(9), 2073. https://doi.org/10.3390/nu11092073

Mohammadi, M., Hajhossein Talasaz, A., & Alidoosti, M. (2016). Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation. Clinical nutrition ESPEN, 15, 1-10. https://doi.org/10.1016/j.clnesp.2016.06.009

Ogata, F. T., Branco, V., Vale, F. F., & Coppo, L. (2021). Glutaredoxin: Discovery, redox defense and much more. Redox biology, 43, 101975. https://doi.org/10.1016/j.redox.2021.101975

Ogra, Y., & Takahashi, K. (2021). [Roles of Gut Microflora in Selenium Metabolism of Host Animals]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 141(5), 689-693. https://doi.org/10.1248/yakushi.20-00243-4

Papandreou, C., Moré, M., & Bellamine, A. (2020). Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect?. Nutrients, 12(5), 1330. https://doi.org/10.3390/nu12051330

Parkhitko, A. A., Jouandin, P., Mohr, S. E., & Perrimon, N. (2019). Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging cell, 18(6), e13034. https://doi.org/10.1111/acel.13034

Richie, J. P., Jr, Nichenametla, S., Neidig, W., Calcagnotto, A., Haley, J. S., Schell, T. D., & Muscat, J. E. (2015). Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. European journal of nutrition, 54(2), 251-263. https://doi.org/10.1007/s00394-014-0706-z

Rom, O., Liu, Y., Liu, Z., Zhao, Y., Wu, J., Ghrayeb, A., Villacorta, L., Fan, Y., Chang, L., Wang, L., Liu, C., Yang, D., Song, J., Rech, J. C., Guo, Y., Wang, H., Zhao, G., Liang, W., Koike, Y., Lu, H., … Chen, Y. E. (2020). Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science translational medicine, 12(572), eaaz2841. https://doi.org/10.1126/scitranslmed.aaz2841

Rossner, R., Kaeberlein, M., & Leiser, S. F. (2017). Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. The Journal of biological chemistry, 292(27), 11138-11146. https://doi.org/10.1074/jbc.R117.779678

Sasaki, K., Sasaki, D., Okai, N., Tanaka, K., Nomoto, R., Fukuda, I., Yoshida, K. I., Kondo, A., & Osawa, R. (2017). Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PloS one, 12(7), e0180991. https://doi.org/10.1371/journal.pone.0180991

Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., Wu, Y., & Hazen, S. L. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England journal of medicine, 368(17), 1575-1584. https://doi.org/10.1056/NEJMoa1109400

Toohey J. I. (2014). Sulfur amino acids in diet-induced fatty liver: a new perspective based on recent findings. Molecules, 19(6), 8334-8349. https://doi.org/10.3390/molecules19068334

Wang, Z., Ma, P., Wang, Y., Hou, B., Zhou, C., Tian, H., Li, B., Shui, G., Yang, X., Qiang, G., Yin, C., & Du, G. (2021). Untargeted metabolomics and transcriptomics identified glutathione metabolism disturbance and PCS and TMAO as potential biomarkers for ER stress in lung. Scientific reports, 11(1), 14680. https://doi.org/10.1038/s41598-021-92779-8

Wang, F., Zhou, H., Deng, L., Wang, L., Chen, J., & Zhou, X. (2020). Serine Deficiency Exacerbates Inflammation and Oxidative Stress via Microbiota-Gut-Brain Axis in D-Galactose-Induced Aging Mice. Mediators of inflammation, 2020, 5821428. https://doi.org/10.1155/2020/5821428

Wiedeman, A. M., Barr, S. I., Green, T. J., Xu, Z., Innis, S. M., & Kitts, D. D. (2018). Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients, 10(10), 1513. https://doi.org/10.3390/nu10101513

Wu, X., Zhang, L., Miao, Y., Yang, J., Wang, X., Wang, C. C., Feng, J., & Wang, L. (2019). Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox biology, 20, 46-59. https://doi.org/10.1016/j.redox.2018.09.021

Yang, Y., Zhang, Y., Xu, Y., Luo, T., Ge, Y., Jiang, Y., Shi, Y., Sun, J., & Le, G. (2019). Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food & function, 10(9), 5952-5968. https://doi.org/10.1039/c9fo00766k

Yoo, W., Zieba, J. K., Foegeding, N. J., Torres, T. P., Shelton, C. D., Shealy, N. G., Byndloss, A. J., Cevallos, S. A., Gertz, E., Tiffany, C. R., Thomas, J. D., Litvak, Y., Nguyen, H., Olsan, E. E., Bennett, B. J., Rathmell, J. C., Major, A. S., Bäumler, A. J., & Byndloss, M. X. (2021). High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science, 373(6556), 813-818. https://doi.org/10.1126/science.aba3683

Yu, S., Guo, H., Luo, Y., & Chen, H. (2021). Ozone protects cardiomyocytes against ischemia/reperfusion injury: Regulating the heat shock protein 70 (HPS70) expression through activating the JAK2/STAT3 Pathway. Bioengineered, 12(1), 6606-6616. https://doi.org/10.1080/21655979.2021.1974760

Zhao, G., He, F., Wu, C., Li, P., Li, N., Deng, J., Zhu, G., Ren, W., & Peng, Y. (2018). Betaine in Inflammation: Mechanistic Aspects and Applications. Frontiers in immunology, 9, 1070. https://doi.org/10.3389/fimmu.2018.01070

##submission.downloads##

Опубліковано

2023-01-27

Номер

Розділ

Огляди