The relationship between ferrokinetic parameters and the state of cardiac remodeling in patients with coronary artery disease with concomitant iron deficiency

Authors

DOI:

https://doi.org/10.14739/2310-1237.2023.1.275370

Keywords:

coronary artery disease, iron deficiency, ferrokinetic parameters, cardiac remodeling

Abstract

The aim of the study: to assess the relationship between ferrokinetic parameters and the state of cardiac remodeling in patients with coronary artery disease (CAD) depending on the stage of iron deficiency (ID).

Materials and methods. The study involved 90 patients with CAD: stable angina pectoris II–III FC (35 men and 55 women, age – 69 (61; 72) years). All patients were divided into 4 clinical groups depending on the parameters of iron metabolism and hemogram: I (n = 16) – patients with absolute ID; II (n = 15) – with latent ID; III (n = 14) – with functional ID; IV (n = 45) – patients with CAD without iron metabolism disorders. The parameters of cardiac remodeling, iron metabolism and their relationship were analyzed.

Results. During the analysis of ferrokinetic parameters, a decrease in transport (serum iron, transferrin saturation) and tissue (ferritin) reserve of iron on the background of an increase in the total and latent iron-binding capacity depending on the stage of sideropenia was established. At the same time, latent iron-binding capacity in patients with absolute ID was less by 43 % than in patients with latent ID. Patients with latent ID demonstrated a significantly higher level of transferrin saturation by 59.9 % than in the group of patients with CAD without concomitant ID. Patients with absolute ID, compared to patients without iron metabolism disorders, demonstrated significantly higher size of RAd by 14.18 % (U = 2.0; p < 0.05); increase EDVI of LV in 1.7 times (U = 4.0; p < 0.05); higher value of LV MI by 16 % (U = 17.0; p < 0.05). Also, patients with ferrokinetics disorders demonstrated a tendency to increase LVIDd, EDV LV, ESV LV, ESVI, LV mass, Ao, RAd, RVd, IVSd compared to patients without concomitant ID. For patients with absolute ID, it was established that there a relationship between the level of ferritin and IVSd (r = +0.84; p < 0.05); serum iron and LAd (r = -0.73; p < 0.05); total iron-binding capacity and Ao (r = -0.78; p < 0.05); latent iron-binding capacity and LVIDs (r = +0.71; p < 0.05). Patients with latent ID demonstrated relationships only between the transferrin saturation and LV MI (r = +0.60; p < 0.05). There were no statistically significant correlation relationships between indicators of iron metabolism and cardiac remodeling in patients with CAD and functional ID.

Conclusions. The intensity of the processes of cardiac remodeling in patients with CAD and iron deficiency increases in direct proportion to the degree of progression of sideropenia, what is confirmed by the relevant correlation relationships.

Author Biographies

M. O. Konovalova, Zaporizhzhia State Medical University, Ukraine

MD, PhD student of the Department of General Practice (Family Medicine) and Internal Diseases

N. S. Mykhailovska, Zaporizhzhia State Medical University, Ukraine

PhD, DSc, Professor, Head of the Department of General Practice (Family Medicine) and Internal Diseases

References

Sirenko, Yu. M. (2022). Stan problemy sertsevo-sudynnoi zakhvoriuvanosti ta smertnosti v Ukraini [The state of the problem of cardiovascular morbidity and mortality in Ukraine]. Liky Ukrainy, (2), 11-14. [in Ukrainian]. https://doi.org/10.37987/1997-9894.2022.2(258).264084

Kotseva, K., De Backer, G., De Bacquer, D., Rydén, L., Hoes, A., Grobbee, D., Maggioni, A., Marques-Vidal, P., Jennings, C., Abreu, A., Aguiar, C., Badariene, J., Bruthans, J., Cifkova, R., Davletov, K., Dilic, M., Dolzhenko, M., Gaita, D., Gotcheva, N., Hasan-Ali, H., … EUROASPIRE V Investigators (2021). Primary prevention efforts are poorly developed in people at high cardiovascular risk: A report from the European Society of Cardiology EURObservational Research Programme EUROASPIRE V survey in 16 European countries. European journal of preventive cardiology, 28(4), 370-379. https://doi.org/10.1177/2047487320908698

Gupta, P. M., Hamner, H. C., Suchdev, P. S., Flores-Ayala, R., & Mei, Z. (2017). Iron status of toddlers, nonpregnant females, and pregnant females in the United States. The American journal of clinical nutrition, 106(Suppl 6), 1640S-1646S. https://doi.org/10.3945/ajcn.117.155978

Koval, O. A. (2020). Diahnostyka ta korektsiia zalizodefitsytnykh staniv u patsiientiv iz sertsevo-sudynnymy zakhvoriuvanniamy [Diagnosis and correction of iron deficiency conditions in patients with cardiovascular diseases]. Zdorovia Ukrainy, (4), 44-45. [in Ukrainian].

Schrage, B., Rübsamen, N., Ojeda, F. M., Thorand, B., Peters, A., Koenig, W., Söderberg, S., Söderberg, M., Mathiesen, E. B., Njølstad, I., Kee, F., Linneberg, A., Kuulasmaa, K., Tarja, P., Salomaa, V., Blankenberg, S., Zeller, T., & Karakas, M. (2021). Association of iron deficiency with incident cardiovascular diseases and mortality in the general population. ESC heart failure, 8(6), 4584-4592. https://doi.org/10.1002/ehf2.13589

Kondratiuk, V. K., & Kondratiuk, K. O. (2021). Zalizodefitsytni stany kriz pryzmu dokazovoi medytsyny [Iron deficiency states through the prism of evidence-based medicine]. Zdorovia Ukrainy 21 storichchia, (9), 12-13. [in Ukrainian].

Tsyhanenko, I. V., Ovcharenko, L. K., & Zaiats, Yu. B. (2022). Anemiia, yak faktor sertsevo-sudynnoho ryzyku na prykladi patsiientiv z khronichnoiu sertsevoiu nedostatnistiu [Anemia as a Cardiovascular Risk Factor in Patients with Chronic Heart Failure]. Ukrainskyi zhurnal medytsyny, biolohii ta sportu, (3), 200-205. [in Ukrainian]. https://doi.org/10.26693/jmbs07.03.200

Snook, J., Bhala, N., Beales, I. L. P., Cannings, D., Kightley, C., Logan, R. P., Pritchard, D. M., Sidhu, R., Surgenor, S., Thomas, W., Verma, A. M., & Goddard, A. F. (2021). British Society of Gastroenterology guidelines for the management of iron deficiency anaemia in adults. Gut, 70(11), 2030-2051. https://doi.org/10.1136/gutjnl-2021-325210

Ministry of Health of Ukraine. (2015, Nowember 2). Unifikovanyi klinichnyi protokol pervynnoi ta vtorynnoi (spetsializovanoi) medychnoi dopomohy. Zalizodefitsytna anemiia. Nakaz Ministerstva okhorony zdorovia Ukrainy vid 02.11.2020 № 709. [Unified clinical protocol for primary, secondary (specialized) care: iron deficiency anemia (No. 709)]. https://zakon.rada.gov.ua/rada/show/v0709282-15#Text

Weiss, G., Ganz, T., & Goodnough, L. T. (2019). Anemia of inflammation. Blood, 133(1), 40-50. https://doi.org/10.1182/blood-2018-06-856500

Auerbach, M., & Spivak, J. (2019). Treatment of Iron Deficiency in the Elderly: A New Paradigm. Clinics in geriatric medicine, 35(3), 307-317. https://doi.org/10.1016/j.cger.2019.03.003

Tatarchuk, T. F. (2020). “Masky” latentnoho zalizodefitsytu: syndrom khronichnoi vtomy ta retsydyvuiuchi infektsii statevykh shliakhiv [“Masks” of latent iron deficiency: chronic fatigue syndrome and recurrent infections of the genital tract]. Akusherstvo, Hinekolohiia, Reproduktolohiia, (5), 11. [in Ukrainian].

Ruhe, J., Waldeyer, C., Ojeda, F., Altay, A., Schnabel, R. B., Schäfer, S., Lackner, K. J., Blankenberg, S., Zeller, T., & Karakas, M. (2018). Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease-First Report on the Prospective Relevance of Intrinsic Iron Release. Biomolecules, 8(3), 72. https://doi.org/10.3390/biom8030072

Zeller, T., Waldeyer, C., Ojeda, F., Schnabel, R. B., Schäfer, S., Altay, A., Lackner, K. J., Anker, S. D., Westermann, D., Blankenberg, S., & Karakas, M. (2018). Adverse Outcome Prediction of Iron Deficiency in Patients with Acute Coronary Syndrome. Biomolecules, 8(3), 60. https://doi.org/10.3390/biom8030060

Alnuwaysir, R. I. S., Hoes, M. F., van Veldhuisen, D. J., van der Meer, P., & Grote Beverborg, N. (2021). Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. Journal of clinical medicine, 11(1), 125. https://doi.org/10.3390/jcm11010125

Moliner, P., Enjuanes, C., Tajes, M., Cainzos-Achirica, M., Lupón, J., Garay, A., Jimenez-Marrero, S., Yun, S., Farré, N., Cladellas, M., Díez, C., Gonzalez-Costello, J., & Comin-Colet, J. (2019). Association Between Norepinephrine Levels and Abnormal Iron Status in Patients With Chronic Heart Failure: Is Iron Deficiency More Than a Comorbidity?. Journal of the American Heart Association, 8(4), e010887. https://doi.org/10.1161/JAHA.118.010887

Núñez, J., Miñana, G., Cardells, I., Palau, P., Llàcer, P., Fácila, L., Almenar, L., López-Lereu, M. P., Monmeneu, J. V., Amiguet, M., González, J., Serrano, A., Montagud, V., López-Vilella, R., Valero, E., García-Blas, S., Bodí, V., de la Espriella-Juan, R., Lupón, J., Navarro, J., … Myocardial-IRON Investigators* † (2020). Noninvasive Imaging Estimation of Myocardial Iron Repletion Following Administration of Intravenous Iron: The Myocardial-IRON Trial. Journal of the American Heart Association, 9(4), e014254. https://doi.org/10.1161/JAHA.119.014254

Ambrosy, A. P., Gurwitz, J. H., Tabada, G. H., Artz, A., Schrier, S., Rao, S. V., Barnhart, H. X., Reynolds, K., Smith, D. H., Peterson, P. N., Sung, S. H., Cohen, H. J., Go, A. S., & RBC HEART Investigators (2019). Incident anaemia in older adults with heart failure: rate, aetiology, and association with outcomes. European heart journal. Quality of care & clinical outcomes, 5(4), 361-369. https://doi.org/10.1093/ehjqcco/qcz010

Alnuwaysir, R. I. S., Hoes, M. F., van Veldhuisen, D. J., van der Meer, P., & Grote Beverborg, N. (2021). Iron Deficiency in Heart Failure: Mecha­nisms and Pathophysiology. Journal of clinical medicine, 11(1), 125. https://doi.org/10.3390/jcm11010125

Núñez, J., Miñana, G., Cardells, I., Palau, P., Llàcer, P., Fácila, L., Almenar, L., López-Lereu, M. P., Monmeneu, J. V., Amiguet, M., González, J., Serrano, A., Montagud, V., López-Vilella, R., Valero, E., García-Blas, S., Bodí, V., de la Espriella-Juan, R., Lupón, J., Navarro, J., … Myocardial-IRON Investigators* † (2020). Noninvasive Imaging Estimation of Myocardial Iron Repletion Following Administration of Intravenous Iron: The Myocardial-IRON Trial. Journal of the American Heart Association, 9(4), e014254. https://doi.org/10.1161/JAHA.119.014254

Sutil-Vega, M., Rizzo, M., & Martínez-Rubio, A. (2019). Anemia and iron deficiency in heart failure: a review of echocardiographic features. Echocardiography, 36(3), 585-594. https://doi.org/10.1111/echo.14271

Schwartz, A. J., Converso-Baran, K., Michele, D. E., & Shah, Y. M. (2019). A genetic mouse model of severe iron deficiency anemia reveals tissue-specific transcriptional stress responses and cardiac remodeling. The Journal of biological chemistry, 294(41), 14991-15002. https://doi.org/10.1074/jbc.RA119.009578

Rineau, E., Gaillard, T., Gueguen, N., Procaccio, V., Henrion, D., Prunier, F., & Lasocki, S. (2018). Iron deficiency without anemia is responsible for decreased left ventricular function and reduced mitochondrial complex I activity in a mouse model. International journal of cardiology, 266, 206-212. https://doi.org/10.1016/j.ijcard.2018.02.021

Haddad, S., Wang, Y., Galy, B., Korf-Klingebiel, M., Hirsch, V., Baru, A. M., Rostami, F., Reboll, M. R., Heineke, J., Flögel, U., Groos, S., Renner, A., Toischer, K., Zimmermann, F., Engeli, S., Jordan, J., Bauersachs, J., Hentze, M. W., Wollert, K. C., & Kempf, T. (2017). Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. European heart journal, 38(5), 362-372. https://doi.org/10.1093/eurheartj/ehw333

Anker, S. D., Kirwan, B. A., van Veldhuisen, D. J., Filippatos, G., Comin-Colet, J., Ruschitzka, F., Lüscher, T. F., Arutyunov, G. P., Motro, M., Mori, C., Roubert, B., Pocock, S. J., & Ponikowski, P. (2018). Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. European journal of heart failure, 20(1), 125-133. https://doi.org/10.1002/ejhf.823

Balendran, S., & Forsyth, C. (2021). Non-anaemic iron deficiency. Australian prescriber, 44(6), 193-196. https://doi.org/10.18773/austprescr.2021.052

Savarese, G., von Haehling, S., Butler, J., Cleland, J. G. F., Ponikowski, P., & Anker, S. D. (2023). Iron deficiency and cardiovascular disease. European heart journal, 44(1), 14-27. https://doi.org/10.1093/eurheartj/ehac569

Martens, P. (2022). The Effect of Iron Deficiency on Cardiac Function and Structure in Heart Failure with Reduced Ejection Fraction. Cardiac failure review, 8, e06. https://doi.org/10.15420/cfr.2021.26

Xu, H. Y., Yang, Z. G., Li, R., Shi, K., Zhang, Y., Li, Z. L., Xia, C. C., Peng, W. L., Chen, Q. Y., & Guo, Y. K. (2017). Myocardial Iron Deficiency in Hemodialysis-Dependent End-Stage Renal Disease Patients Undergoing Oral Iron Therapy. Journal of the American College of Cardiology, 70(19), 2455-2456. https://doi.org/10.1016/j.jacc.2017.09.013

Melenovsky, V., Petrak, J., Mracek, T., Benes, J., Borlaug, B. A., Nuskova, H., Pluhacek, T., Spatenka, J., Kovalcikova, J., Drahota, Z., Kautzner, J., Pirk, J., & Houstek, J. (2017). Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. European journal of heart failure, 19(4), 522-530. https://doi.org/10.1002/ejhf.640

Kitamura, N., Yokoyama, Y., Taoka, H., Nagano, U., Hosoda, S., Taworntawat, T., Nakamura, A., Ogawa, Y., Tsubota, K., & Watanabe, M. (2021). Iron supplementation regulates the progression of high fat diet induced obesity and hepatic steatosis via mitochondrial signaling pathways. Scientific reports, 11(1), 10753. https://doi.org/10.1038/s41598-021-89673-8

Chung, Y. J., Swietach, P., Curtis, M. K., Ball, V., Robbins, P. A., & Lakhal-Littleton, S. (2021). Iron-Deficiency Anemia Results in Transcriptional and Metabolic Remodeling in the Heart Toward a Glycolytic Phenotype. Frontiers in cardiovascular medicine, 7, 616920. https://doi.org/10.3389/fcvm.2020.616920

Biegus, J., Zymliński, R., Sokolski, M., Jankowska, E. A., Banasiak, W., & Ponikowski, P. (2019). Elevated lactate in acute heart failure patients with intracellular iron deficiency as identifier of poor outcome. Kardiologia polska, 77(3), 347-354. https://doi.org/10.5603/KP.a2019.0014

Petrak, J., Havlenova, T., Krijt, M., Behounek, M., Franekova, J., Cervenka, L., Pluhacek, T., Vyoral, D., & Melenovsky, V. (2019). Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochimica et biophysica acta. General subjects, 1863(4), 703-713. https://doi.org/10.1016/j.bbagen.2019.01.010

Chen, Y., Wan, J., Xia, H., Li, Y., Xu, Y., Lin, H., & Iftikhar, H. (2020). Total iron binding capacity (TIBC) is a potential biomarker of left ventricular remodelling for patients with iron deficiency anaemia. BMC cardiovascular disorders, 20(1), 4. https://doi.org/10.1186/s12872-019-01320-3

Published

2023-04-28

How to Cite

1.
Konovalova MO, Mykhailovska NS. The relationship between ferrokinetic parameters and the state of cardiac remodeling in patients with coronary artery disease with concomitant iron deficiency. Pathologia [Internet]. 2023Apr.28 [cited 2025Jan.8];20(1):20-6. Available from: http://pat.zsmu.edu.ua/article/view/275370

Issue

Section

Original research