Nestin, CD44, Ki-67, GS and AQP4 expression in the brain neurogenic niches of deceased patients with liver cirrhosis of different degree

Authors

DOI:

https://doi.org/10.14739/2310-1237.2023.2.286125

Keywords:

hepatic encephalopathy, neurogenesis, astrocytogenesis, stem cells, Nestin, CD44, Ki-67, GS, AQP4

Abstract

The aim of the study. Immunohistochemical study of Nestin, CD44, Ki-67, GS, AQP4 expression in the subventricular zone of the lateral ventricle and hippocampus of deceased patients with liver cirrhosis depending on the age and Child–Pugh score.

Materials and methods. The brains of 90 deceased patients aged 65 ± 3 years with non-alcoholic liver cirrhosis (LC) Child–Pugh class A, B and C were studied, which comprised 3 groups: group “A” – 30 deceased patients with compensated LC; “B” – 30 deceased patients with subcompensated LC (“mild decompensation”); “C” – 30 deceased patients with decompensated LC. Control group included brains of 30 patients died from acute cardiovascular failure and did not have liver disease. Each group was divided into 2 subgroups: patients ≤59 y. o. and patients ≥60 y. o. Grade 1–4 hepatic encephalopathy was detected in 59 out of 90 (65.55 %) patients with LC. The immunohistochemical levels of Nestin, CD44, Ki-67, GS and AQP4 were evaluated in paraffin tissue sections of the subventricular zones (SVZ) of the anterior and lower horns of the brain lateral ventricles, as well as the subgranular zone (SGZ) of the dentate gyrus (DG) and other structures of hippocampus in standardized fields of view of the microscope Scope A1 Carl Zeiss (Germany) using Videotest-Morphology 5.2.0.158 software.

Results. In SVZ of control subgroups, Nestin+ astrocyte-like stem cells were localized mainly in subventricular glial nodules (SGN) and to a lesser extent in astrocytic ribbon. In brains of patients with compensated and subcompensated LC, there was increased Nestin expression compared to control (by 61.36 % and 208.74 %, respectively) due to increased numbers of Nestin+ cells in astrocytic ribbons. In the hippocampus of control and cirrhotic patients, Nestin expression was determined mainly in astrocyte-like cells of the fimbria-fornix, “glial plates” around the blood vessels entering the choroid plexus and subpial zone. In the SVZ of patients with subcompensated LC, the expressions of Nestin, CD44, and Ki-67 were maximally increased (by 208.74 %, 37.83 %, and 3 times, respectively), moreover, in the areas of periventricular reparative astrogliosis, in small foci of encephalolysis in the head of caudate nucleus, among GS+ and CD44+ astrocytes clusters of astrocyte-like Nestin+ and CD44+ cells were detected. In patients with decompensated LC, a significant decrease in Nestin and CD44 expression and absence of Ki-67 were observed in the SVZ, with a simultaneous maximum increase in the expression of GS and AQP4.

Conclusions. In the neurogenic niches of the lateral ventricles and hippocampus of patients with compensated and subcompensated LC, there are signs of activation of neural stem cells and niche astrocytes with increased expression of Nestin, CD44, and Ki-67, which reaches maximum in subcompensated LC. Clusters of astrocyte-like Nestin+ and CD44+ cells appear in foci of periventricular repair, which probably migrate from active adjacent subventricular niche. In the brains of the patients with decompensated LC and severe Grade 3–4 hepatic encephalopathy, deep astrocytic dysmetabolic dystrophy is associated with substantial decrease in the activity of subventricular stem niche and expected astrocytogenesis.

Author Biographies

T. V. Shulyatnikova, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Associate Professor of the Department of Pathological Anatomy and Forensic Medicine

V. O. Tumanskiy, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor of the Department of Pathological Anatomy and Forensic Medicine, Vice-Rector for Research

References

Shulyatnikova, T. V., & Tumanskyi, V. O. (2022). Key astroglial markers in human liver cirrhosis of different degree: immunohistochemical study. Zaporozhye medical journal, 24(5), 529-537. https://doi.org/10.14739/2310-1210.2022.5.261327

Shulyatnikova, T. V., & Tumanskyi, V. O. (2023). Ammonia level and Alzheimer type 2 astrocytes in the brain of deceased patients with liver cirrhosis of the varying degree. Pathologia, 20(1), 36-44. https://doi.org/10.14739/2310-1237.2023.1.276453

Gault, N., & Szele, F. G. (2021). Immunohistochemical evidence for adult human neurogenesis in health and disease. WIREs mechanisms of disease, 13(6), e1526. https://doi.org/10.1002/wsbm.1526

De Sonnaville, S. F. A. M., van Strien, M. E., Middeldorp, J., Sluijs, J. A., van den Berge, S. A., Moeton, M., Donega, V., van Berkel, A., Deering, T., De Filippis, L., Vescovi, A. L., Aronica, E., Glass, R., van de Berg, W. D. J., Swaab, D. F., Robe, P. A., & Hol, E. M. (2020). The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain communications, 2(2), fcaa150. https://doi.org/10.1093/braincomms/fcaa150

Quiñones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., Romero-Rodriguez, R., Berger, M. S., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. The Journal of comparative neurology, 494(3), 415-434. https://doi.org/10.1002/cne.20798

Griffiths, B. B., Bhutani, A., & Stary, C. M. (2020). Adult neurogenesis from reprogrammed astrocytes. Neural regeneration research, 15(6), 973-979. https://doi.org/10.4103/1673-5374.270292

Geribaldi-Doldán, N., Carrascal, L., Pérez-García, P., Oliva-Montero, J. M., Pardillo-Díaz, R., Domínguez-García, S., Bernal-Utrera, C., Gómez-Oliva, R., Martínez-Ortega, S., Verástegui, C., Nunez-Abades, P., & Castro, C. (2023). Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair?. International journal of molecular sciences, 24(7), 6587. https://doi.org/10.3390/ijms24076587

Passarelli, J. P., Nimjee, S. M., & Townsend, K. L. (2022). Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Translational stroke research, 10.1007/s12975-022-01109-1. Advance online publication. https://doi.org/10.1007/s12975-022-01109-1

Akdemir, E. S., Huang, A. Y., & Deneen, B. (2020). Astrocytogenesis: where, when, and how. F1000Research, 9, F1000 Faculty Rev-233. https://doi.org/10.12688/f1000research.22405.1

Macas, J., Nern, C., Plate, K. H., & Momma, S. (2006). Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. The Journal of neuroscience: the official journal of the Society for Neuroscience, 26(50), 13114-13119. https://doi.org/10.1523/JNEUROSCI.4667-06.2006

Zheng, W., ZhuGe, Q., Zhong, M., Chen, G., Shao, B., Wang, H., Mao, X., Xie, L., & Jin, K. (2013). Neurogenesis in adult human brain after traumatic brain injury. Journal of neurotrauma, 30(22), 1872-1880. https://doi.org/10.1089/neu.2010.1579

Curtis, M. A., Penney, E. B., Pearson, A. G., van Roon-Mom, W. M., Butterworth, N. J., Dragunow, M., Connor, B., & Faull, R. L. (2003). Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 9023-9027. https://doi.org/10.1073/pnas.1532244100

Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J., & Llorens-Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nature medicine, 25(4), 554-560. https://doi.org/10.1038/s41591-019-0375-9

Wan, S. Z., Nie, Y., Zhang, Y., Liu, C., & Zhu, X. (2020). Assessing the Prognostic Performance of the Child-Pugh, Model for End-Stage Liver Disease, and Albumin-Bilirubin Scores in Patients with Decompensated Cirrhosis: A Large Asian Cohort from Gastroenterology Department. Disease markers, 2020, 5193028. https://doi.org/10.1155/2020/5193028

Liu, J., Reeves, C., Jacques, T., McEvoy, A., Miserocchi, A., Thompson, P., Sisodiya, S., & Thom, M. (2018). Nestin-expressing cell types in the temporal lobe and hippocampus: Morphology, differentiation, and proliferative capacity. Glia, 66(1), 62-77. https://doi.org/10.1002/glia.23211

Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez, A. J., Kriegstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., & Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696), 377-381. https://doi.org/10.1038/nature25975

Cassé, F., Richetin, K., & Toni, N. (2018). Astrocytes' Contribution to Adult Neurogenesis in Physiology and Alzheimer's Disease. Frontiers in cellular neuroscience, 12, 432. https://doi.org/10.3389/fncel.2018.00432

Clavreul, S., Dumas, L., & Loulier, K. (2022). Astrocyte development in the cerebral cortex: Complexity of their origin, genesis, and maturation. Frontiers in neuroscience, 16, 916055. https://doi.org/10.3389/fnins.2022.916055

Sohn, J., Orosco, L., Guo, F., Chung, S. H., Bannerman, P., Mills Ko, E., Zarbalis, K., Deng, W., & Pleasure, D. (2015). The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. The Journal of neuroscience, 35(9), 3756-3763. https://doi.org/10.1523/JNEUROSCI.3454-14.2015

Moroni, R. F., Deleo, F., Regondi, M. C., Madaschi, L., Amadeo, A., & Frassoni, C. (2018). Proliferative cells in the rat developing neocortical grey matter: new insights into gliogenesis. Brain structure & function, 223(9), 4053-4066. https://doi.org/10.1007/s00429-018-1736-8

Potokar, M., Morita, M., Wiche, G., & Jorgačevski, J. (2020). The Diversity of Intermediate Filaments in Astrocytes. Cells, 9(7), 1604. https://doi.org/10.3390/cells9071604

Wang, C., Liu, F., Liu, Y. Y., Zhao, C. H., You, Y., Wang, L., Zhang, J., Wei, B., Ma, T., Zhang, Q., Zhang, Y., Chen, R., Song, H., & Yang, Z. (2011). Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell research, 21(11), 1534-1550. https://doi.org/10.1038/cr.2011.83

Bihlmaier, R., Deffner, F., Mattheus, U., Neckel, P. H., Hirt, B., & Mack, A. F. (2023). Aquaporin-1 and Aquaporin-4 Expression in Ependyma, Choroid Plexus and Surrounding Transition Zones in the Human Brain. Biomolecules, 13(2), 212. https://doi.org/10.3390/biom13020212

Nogueira, A. B., Sogayar, M. C., Colquhoun, A., Siqueira, S. A., Nogueira, A. B., Marchiori, P. E., & Teixeira, M. J. (2014). Existence of a potential neurogenic system in the adult human brain. Journal of translational medicine, 12, 75. https://doi.org/10.1186/1479-5876-12-75

Su, W., Foster, S. C., Xing, R., Feistel, K., Olsen, R. H., Acevedo, S. F., Raber, J., & Sherman, L. S. (2017). CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. The Journal of biological chemistry, 292(11), 4434-4445. https://doi.org/10.1074/jbc.M116.774109

Dzwonek, J., & Wilczynski, G. M. (2015). CD44: molecular interactions, signaling and functions in the nervous system. Frontiers in cellular neuroscience, 9, 175.

Liu, Y., Han, S. S., Wu, Y., Tuohy, T. M., Xue, H., Cai, J., Back, S. A., Sherman, L. S., Fischer, I., & Rao, M. S. (2004). CD44 expression identifies astrocyte-restricted precursor cells. Developmental biology, 276(1), 31-46. https://doi.org/10.1016/j.ydbio.2004.08.018

Wilhelmsson, U., Lebkuechner, I., Leke, R., Marasek, P., Yang, X., Antfolk, D., Chen, M., Mohseni, P., Lasič, E., Bobnar, S. T., Stenovec, M., Zorec, R., Nagy, A., Sahlgren, C., Pekna, M., & Pekny, M. (2019). Nestin Regulates Neurogenesis in Mice Through Notch Signaling from Astrocytes to Neural Stem Cells. Cerebral cortex (New York, N.Y.: 1991), 29(10), 4050-4066. https://doi.org/10.1093/cercor/bhy284

Downloads

Published

2023-08-30

How to Cite

1.
Shulyatnikova TV, Tumanskiy VO. Nestin, CD44, Ki-67, GS and AQP4 expression in the brain neurogenic niches of deceased patients with liver cirrhosis of different degree. Pathologia [Internet]. 2023Aug.30 [cited 2024Dec.26];20(2):108-17. Available from: http://pat.zsmu.edu.ua/article/view/286125

Issue

Section

Original research