The role of clinical and immunological parameters in predicting the effectiveness of additional immunotropic therapy in oxygen-dependent patients with COVID-19 coronavirus disease




coronavirus disease, COVID-19, viral infection, oxygen dependence, immunology, cytokines, clinic, diagnosis, treatment, prognosis


Aim. The purpose of the research is to find out the role of clinical and immunological parameters in predicting the effectiveness of additional immunotropic therapy in oxygen-dependent patients with the coronavirus disease COVID-19.

Material and methods. 79 oxygen-dependent patients with COVID-19 were examined, who received additional therapy with tocilizumab according to current protocols. The patients were divided into groups: I group – 39 patients who recovered; group II – 40 patients with a fatal outcome of the disease. The content of ferritin (Monobind Inc., USA), interleukin (IL) IL-2 (Elabscience, USA), IL-6 (Invitrogen, Austria), monocyte chemotactic protein-1 (MCP-1) (Elabscience, USA) was determined in the blood serum of patients and persons of the control group by the method of immunoenzymatic analysis. Statistical processing of the obtained data was carried out in the program Statistica 13 for Windows (StatSoft Inc., No. JPZ804I382130ARCN10-J).

Results. Threshold levels of immunological parameters at different stages of observation, which have prognostic value regarding the risk of a fatal outcome of COVID-19, have been established. After 5 days of tocilizumab administration, the preservation of the indicator of the absolute number of blood lymphocytes ≤1.2 × 109/l (AUC = 0.631, p = 0.039), CRP level >67.5 mg/l (AUC = 0.670, p = 0.020), IL-2 >309.45 pg/ml (AUC = 0.761, p = 0.013), IL-6 >4.66 pg/ml (AUC = 0.871, p < 0.001) indicated a high probability of developing a fatal outcome of the disease in patients with COVID-19. The analysis of the diagnostic significance of ferritin showed the informativeness of the level of its increase as at the time of the start of observation >548.02 ng/ml (AUC = 0.718, p = 0.004) and after 5 days the application of additional immunotropic therapy >443.55 ng/ml (AUC = 0.736, p = 0.026).

It has been proven that, in addition to immunological parameters, when assessing the probability of a fatal outcome of COVID-19, such clinical parameters as the presence of febrile fever at the time of the appearance of oxygen dependence (p < 0.05) and the duration of oxygen dependence at the time of additional immunotropic therapy with tocilizumab are informative (p < 0.05). Under the conditions of additional immunotropic therapy with tocilizumab more than 4 days after the onset of oxygen dependence, the probability of ineffectiveness of the specified additional treatment was significant (AUC = 0.756, p < 0.001).

Conclusions. The dynamics of immunological parameters in oxygen-dependent patients with COVID-19 during additional immunotropic therapy with tocilizumab has certain features with different treatment results. When predicting the probable risk of a fatal outcome of the disease, clinical parameters are informative, namely the appearance of febrile fever during the development of oxygen dependence and the duration of oxygen dependence until the moment of tocilizumab administration, and immunological parameters, namely the level of the absolute content of lymphocytes, ferritin, CRP, IL-2, IL-6 in the blood.

Author Biographies

O. V. Riabokon, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Infectious Diseases

V. V. Cherkaskyi, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Assistant Professor of the Department of Infectious Diseases

Yu. Yu. Riabokon, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor of the Department of Pediatric Infectious Diseases

A. V. Vynokurova, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

Leading Specialist of Educational and Scientific Medical Laboratory Center with a Vivarium


Montazersaheb, S., Hosseiniyan Khatibi, S. M., Hejazi, M. S., Tarhriz, V., Farjami, A., Ghasemian Sorbeni, F., Farahzadi, R., & Ghasemnejad, T. (2022). COVID-19 infection: an overview on cytokine storm and related interventions. Virology Journal, 19(1), 92.

Grasselli, G., Tonetti, T., Filippini, C., Slutsky, A. S., Pesenti, A., & Ranieri, V. M. (2021). Pathophysiology of COVID-19-associated acute respiratory distress syndrome - Authors' reply. The Lancet. Respiratory medicine, 9(1), e5-e6.

Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 Cytokine Storm; What We Know So Far. Frontiers in immunology, 11, 1446.

Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu, H., Zhang, X., Zhang, M., Wu, S., Song, J., Chen, T., Han, M., Li, S., Luo, X., Zhao, J., & Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, 130(5), 2620-2629.

Mangalmurti, N., & Hunter, C. A. (2020). Cytokine Storms: Understanding COVID-19. Immunity, 53(1), 19-25.

Rostamian, A., Ghazanfari, T., Arabkheradmand, J., Edalatifard, M., Ghaffarpour, S., Salehi, M. R., Raeeskarami, S. R., Mahmoodi Aliabadi, M., Rajabnia Chenary, M., Mirsharif, E. S., Jamali, D., Sattarian, M. R., Najafizadeh, R., Hosseinieselki Sari, S., Jafarpour, S., Nezhadseifi, E., Movasseghi, S., Baharvand, E., Beiranvand, S., ... Naghizadeh, M. M. (2020). Interleukin-6 as a Potential Predictor of COVID-19 Disease Severity in Hospitalized Patients and its Association with Clinical Laboratory Routine Tests. Immunoregulation, 29-36.

Coomes, E. A., & Haghbayan, H. (2020). Interleukin-6 in Covid-19: A systematic review and meta-analysis. Reviews in medical virology, 30(6), 1-9.

Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine, 46(5), 846-848.

Jones, B. E., Maerz, M. D., & Buckner, J. H. (2018). IL-6: a cytokine at the crossroads of autoimmunity. Current Opinion in Immunology, 55, 9-14.

Awadasseid, A., Wu, Y., Tanaka, Y., & Zhang, W. (2021). Effective drugs used to combat SARS-CoV-2 infection and the current status of vaccines. Biomedicine & Pharmacotherapy, 137, 111330.

The RECOVERY Collaborative Group. (2020). Dexamethasone in Hospitalized Patients with Covid-19 {textemdash} Preliminary Report. New England Journal of Medicine, 1-11. Retrieved from

Russell, L., Uhre, K. R., Lindgaard, A. L. S., Degn, J. F., Wetterslev, M., Sivapalan, P., Anthon, C. T., Mikkelsen, V. S., la Porta, L. C., Jensen, T. S., Levin, C. K., Kronborg, G., Krogh-Madsen, R., Plovsing, R. T. R., Brix, H., Schønemann-Lund, M., Valbjørn, L., Lauritzen, S., Koch, E. B., ... Perner, A. (2021). Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia. JAMA, 326(18), 1807.

Dequin, P.-F., Heming, N., Meziani, F., Plantefève, G., Voiriot, G., Badié, J., François, B., Aubron, C., Ricard, J.-D., Ehrmann, S., Jouan, Y., Guillon, A., Leclerc, M., Coffre, C., Bourgoin, H., Lengellé, C., Caille-Fénérol, C., Tavernier, E., Zohar, S., ... Le Gouge, A. (2020). Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19. JAMA, 324(13), 1298.

Angus, D. C., Derde, L., Al-Beidh, F., Annane, D., Arabi, Y., Beane, A., van Bentum-Puijk, W., Berry, L., Bhimani, Z., Bonten, M., Bradbury, C., Brunkhorst, F., Buxton, M., Buzgau, A., Cheng, A. C., de Jong, M., Detry, M., Estcourt, L., Fitzgerald, M., ... Gordon, A. C. (2020). Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19. JAMA, 324(13), 1317.

Liu, F., Li, L., Xu, M., Wu, J., Luo, D., Zhu, Y., Li, B., Song, X., & Zhou, X. (2020). Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. Journal of Clinical Virology, 127, 104370.

Ulhaq, Z. S., & Soraya, G. V. (2020). Interleukin-6 as a potential biomarker of COVID-19 progression. Médecine et Maladies Infectieuses, 50(4), 382-383.

Rahmati, M., & Moosavi, M. A. (2020). Cytokine-Targeted Therapy in Severely ill COVID-19 Patients: Options and Cautions. Eurasian Journal of Medicine and Oncology. Kare Publishing.

Smolen, J. S., Landewé, R. B. M., Bijlsma, J. W. J., Burmester, G. R., Dougados, M., Kerschbaumer, A., McInnes, I. B., Sepriano, A., van Vollenhoven, R. F., de Wit, M., Aletaha, D., Aringer, M., Askling, J., Balsa, A., Boers, M., den Broeder, A. A., Buch, M. H., Buttgereit, F., Caporali, R., Cardiel, M. H., … van der Heijde, D. (2020). EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Annals of the rheumatic diseases, 79(6), 685-699.

Bhimraj, A., Morgan, R. L., Shumaker, A. H., Baden, L., Cheng, V. C. C., Edwards, K. M., Gallagher, J. C., Gandhi, R. T., Muller, W. J., Nakamura, M. M., O'Horo, J. C., Shafer, R. W., Shoham, S., Murad, M. H., Mustafa, R. A., Sultan, S., & Falck-Ytter, Y. (2022). Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clinical infectious diseases, ciac724. Advance online publication.

COVID-19 rapid guideline: managing COVID-19. (2022). National Institute for Health and Care Excellence (NICE).

Vizir, V. A., Sadomov, A. S., & Demidenko, O. V. (2021). Zastosuvannia totsylizumabu v kompleksnomu likuvanni khvoroho na koronavirusnu khvorobu (COVID-19) iz suputnim revmatoidnym artrytom (klinichnyi vypadok) [Use of tocilizumab in the combination treatment of a COVID-19 patient with concomitant rheumatoid arthritis (a case report)]. Zaporozhye Medical Journal, 23(5), 739-748. [in Ukrainian].

Riabokon, O. V., Kuliesh, I. O., Furyk, O. О., Matvieieva, T. B., & Kalashnyk, K. V. (2022). Clinical experience with tocilizumab in the treatment of pregnant woman with severe COVID-19. Pathologia, 19(1), 79-83.

Okoh, A. K., Bishburg, E., Grinberg, S., & Nagarakanti, S. (2021). Tocilizumab use in COVID-19-associated pneumonia. Journal of medical virology, 93(2), 1023-1028.

Lan, S.-H., Lai, C.-C., Huang, H.-T., Chang, S.-P., Lu, L.-C., & Hsueh, P.-R. (2020). Tocilizumab for severe COVID-19: a systematic review and meta-analysis. International Journal of Antimicrobial Agents, 56(3), 106103.

Hermine, O., Mariette, X., Tharaux, P.-L., Resche-Rigon, M., Porcher, R., Ravaud, P., Bureau, S., Dougados, M., Tibi, A., Azoulay, E., Cadranel, J., Emmerich, J., Fartoukh, M., Guidet, B., Humbert, M., Lacombe, K., Mahevas, M., Pene, F., Pourchet-Martinez, V., ... Renet, S. (2021). Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia. JAMA Internal Medicine, 181(1), 32.

Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases, 40(5), 373-383.

Sheppard, M., Laskou, F., Stapleton, P. P., Hadavi, S., & Dasgupta, B. (2017). Tocilizumab (Actemra). Human Vaccines & Immunotherapeutics, 13(9), 1972-1988.

Scott, L. J. (2017). Tocilizumab: A Review in Rheumatoid Arthritis. Drugs, 77(17), 1865-1879.

Atal, S., & Fatima, Z. (2020). IL-6 Inhibitors in the Treatment of Serious COVID-19: A Promising Therapy? Pharmaceutical Medicine, 34(4), 223-231.

Cheng, L., Li, H., Li, L., Liu, C., Yan, S., Chen, H., & Li, Y. (2020). Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Journal of clinical laboratory analysis, 34(10), e23618.

Hill, J. A., Menon, M. P., Dhanireddy, S., Wurfel, M. M., Green, M., Jain, R., Chan, J. D., Huang, J., Bethune, D., Turtle, C., Johnston, C., Xie, H., Leisenring, W. M., Nina Kim, H., & Cheng, G. S. (2021). Tocilizumab in hospitalized patients with COVID-19: Clinical outcomes, inflammatory marker kinetics, and safety. Journal of medical virology, 93(4), 2270-2280.

Al-Baadani, A., Eltayeb, N., Alsufyani, E., Albahrani, S., Basheri, S., Albayat, H., Batubara, E., Ballool, S., Al Assiri, A., Faqihi, F., Musa, A. B., Robert, A. A., Alsherbeeni, N., & Elzein, F. (2021). Efficacy of tocilizumab in patients with severe COVID-19: Survival and clinical outcomes. Journal of Infection and Public Health, 14(8), 1021-1027.

Moore, J. B., & June, C. H. (2020). Cytokine release syndrome in severe COVID-19. Science, 368(6490), 473-474.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054-1062.

Torti, F. M., & Torti, S. V. (2002). Regulation of ferritin genes and protein. Blood, 99(10), 3505-3516.

Kernan, K. F., & Carcillo, J. A. (2017). Hyperferritinemia and inflammation. International Immunology, 29(9), 401-409.

Carcillo, J. A., Sward, K., Halstead, E. S., Telford, R., Jimenez-Bacardi, A., Shakoory, B., Simon, D., & Hall, M. (2017). A Systemic Inflammation Mortality Risk Assessment Contingency Table for Severe Sepsis*. Pediatric Critical Care Medicine, 18(2), 143-150.

Li, Y., Hu, Y., Yu, J., & Ma, T. (2020). Retrospective analysis of laboratory testing in 54 patients with severe- or critical-type 2019 novel coronavirus pneumonia. Laboratory Investigation, 100(6), 794-800.

Ni, M., Tian, F., Xiang, D., & Yu, B. (2020). Characteristics of inflammatory factors and lymphocyte subsets in patients with severe COVID-19. Journal of Medical Virology, 92(11), 2600-2606.

Kox, M., Frenzel, T., Schouten, J., van de Veerdonk, F. L., Koenen, H. J. P. M., & Pickkers, P. (2020). COVID-19 patients exhibit less pronounced immune suppression compared with bacterial septic shock patients. Critical Care, 24(1).

Sarfraz, A., Sarfraz, Z., Sarfraz, M., Aftab, H., & Pervaiz, Z. (2021). Tocilizumab and covid-19: A meta-analysis of 2120 patients with severe disease and implications for clinical trial methodologies. Turkish Journal of Medical Sciences, 51(3), 890-897.

Azmy, V., Kaman, K., Tang, D., Zhao, H., Dela Cruz, C., Topal, J. E., Malinis, M., & Price, C. C. (2021). Cytokine Profiles Before and After Immune Modulation in Hospitalized Patients with COVID-19. Journal of Clinical Immunology, 41(4), 738-747.

Hasichaolu, Zhang, X., Li, X., Li, X., & Li, D. (2020). Circulating Cytokines and Lymphocyte Subsets in Patients Who Have Recovered from COVID-19. BioMed Research International, 2020, 1-12.

Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., Chen, L., Li, M., Liu, Y., Wang, G., Yuan, Z., Feng, Z., Zhang, Y., Wu, Y., & Chen, Y. (2020). Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Frontiers in Immunology, 11.

Wang, F., Nie, J., Wang, H., Zhao, Q., Xiong, Y., Deng, L., Song, S., Ma, Z., Mo, P., & Zhang, Y. (2020). Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. The Journal of Infectious Diseases, 221(11), 1762-1769.

Prompetchara, E., Ketloy, C., & Palaga, T. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology, 38, 1-9.

Gupta, S., Wang, W., Hayek, S. S., Chan, L., Mathews, K. S., Melamed, M. L., Brenner, S. K., Leonberg-Yoo, A., Schenck, E. J., Radbel, J., Reiser, J., Bansal, A., Srivastava, A., Zhou, Y., Finkel, D., Green, A., Mallappallil, M., Faugno, A. J., Zhang, J., ... Leaf, D. E. (2021). Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19. JAMA Internal Medicine, 181(1), 41.




How to Cite

Riabokon OV, Cherkaskyi VV, Riabokon YY, Vynokurova AV. The role of clinical and immunological parameters in predicting the effectiveness of additional immunotropic therapy in oxygen-dependent patients with COVID-19 coronavirus disease. Pathologia [Internet]. 2023Dec.22 [cited 2024Mar.2];20(3):207-1. Available from:



Original research