The relationship between fetuin-A level and the clinical features of patients with coronary artery disease associated with iron deficiency

Authors

DOI:

https://doi.org/10.14739/2310-1237.2023.3.288735

Keywords:

coronary artery disease, iron deficiency, anemia, fetuin-A, cardiac remodeling, autonomic dysfunction, risk

Abstract

The aim of the study: to assess the relationship between the level of fetuin-A and features of clinical hemogram, ferrokinetic parameters, vegetative and structural-functional changes of the myocardium in patients with coronary artery disease (CAD) associated with different stages of iron deficiency (ID).

Materials and methods. The study involved 90 patients with CAD: stable angina pectoris II–III FC (35 men and 55 women, age – 69 (61; 72)). All patients were divided into 4 clinical groups depending on the parameters of iron metabolism and hemogram: I (n = 16) – patients with absolute ID, II (n = 15) – with latent ID, III (n = 14) – with functional ID; IV (n = 45) – patients CAD without iron metabolism disorders. The physiological concentration of fetuin-A was determined in 15 conditionally healthy people. The results of echocardioscopy, Holter ECG monitoring and their relationship with the level of fetuin-A were analyzed.

Results. In patients with CAD associated with various stages of ID, there is a decrease in the concentration of fetuin-A in direct proportion to the degree of progression of sideropenia was established. It was established that there is a relationship between the level of fetuin-A and the concentration of ferritin and transferrin saturation for patients with absolute ID as well as the number of erythrocytes in patients with functional ID. It was established that there is a relationship between the level of fetuin-A and PWd (rs = -0.60, p < 0.05) for patients with absolute ID; for patients with latent ID – with the E/A ratio (rs = +0.66, p < 0.05). In patients with absolute ID and latent ID a number of correlations between fetuin-A level and heart rate variability indicators in active and passive periods was established. The presence of a low level of fetuin-A in patients with CAD and ID increased the risk of left ventricular hypertrophy by 1.5 times, left ventricular diastolic dysfunction by 1.6 times, autonomic dysfunction by 2.14 times in the active period and 1.95 times in the passive period.

Conclusions. In patients with CAD, there is a progressive decrease in the fetuin-A level depending on the degree of ID, which contributes to the deepening of disorders of iron metabolism and clinical hemogram, negatively affects the structural and functional state of the myocardium and heart rate variability, increases the risk of developing myocardial hypertrophy, left ventricular diastolic dysfunction and vegetative imbalance.

Author Biographies

M. O. Konovalova, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

PhD student of the Department of General Practice (Family Medicine) and Internal Diseases

N. S. Mykhailovska, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of General Practice (Family Medicine) and Internal Diseases

References

Chekol Abebe, E., Tilahun Muche, Z., Behaile T/Mariam, A., Mengie Ayele, T., Mekonnen Agidew, M., Teshome Azezew, M., Abebe Zewde, E., Asmamaw Dejenie, T., & Asmamaw Mengstie, M. (2022). The structure, biosynthesis, and biological roles of fetuin-A: A review. Frontiers in cell and developmental biology, 10, 945287. https://doi.org/10.3389/fcell.2022.945287

Keçebaş, M., Güllülü, S., Sağ, S., Beşli, F., Açikgöz, E., Sarandöl, E., & Aydinlar, A. (2014). Serum fetuin-A levels in patients with systolic heart failure. Acta cardiologica, 69(4), 399-405. https://doi.org/10.1080/ac.69.4.3036656

Lin, Y. H., Franc, V., & Heck, A. J. R. (2018). Similar Albeit Not the Same: In-Depth Analysis of Proteoforms of Human Serum, Bovine Serum, and Recombinant Human Fetuin. Journal of proteome research, 17(8), 2861-2869. https://doi.org/10.1021/acs.jproteome.8b00318

Icer, M. A., & Yıldıran, H. (2021). Effects of fetuin-A with diverse functions and multiple mechanisms on human health. Clinical biochemistry, 88, 1-10. https://doi.org/10.1016/j.clinbiochem.2020.11.004

Jahnen-Dechent, W., Heiss, A., Schäfer, C., & Ketteler, M. (2011). Fetuin-A regulation of calcified matrix metabolism. Circulation research, 108(12), 1494-1509. https://doi.org/10.1161/CIRCRESAHA.110.234260

Jirak, P., Stechemesser, L., Moré, E., Franzen, M., Topf, A., Mirna, M., Paar, V., Pistulli, R., Kretzschmar, D., Wernly, B., Hoppe, U. C., Lichtenauer, M., & Salmhofer, H. (2019). Clinical implications of fetuin-A. Advances in clinical chemistry, 89, 79-130. https://doi.org/10.1016/bs.acc.2018.12.003

Pagan, L. U., Gatto, M., Martinez, P. F., Okoshi, K., & Okoshi, M. P. (2022). Biomarkers in Cardiovascular Disease: The Role of Fetuin-A. Biomarcadores em Doenças Cardiovasculares: O Papel da Fetuína-A. Arquivos brasileiros de cardiologia, 118(1), 22-23. https://doi.org/10.36660/abc.20210980

Carracedo, M., & Bäck, M. (2018). Fetuin-A in aortic stenosis and valve calcification: Not crystal clear. International journal of cardiology, 265, 77-78. https://doi.org/10.1016/j.ijcard.2018.04.115

Chattopadhyay, M., Mukherjee, S., Chatterjee, S. K., Chattopadhyay, D., Das, S., Majumdar, S. S., Mukhopadhyay, S., Mukherjee, S., & Bhattarcharya, S. (2018). Impairment of energy sensors, SIRT1 and AMPK, in lipid induced inflamed adipocyte is regulated by Fetuin A. Cellular signalling, 42, 67-76. https://doi.org/10.1016/j.cellsig.2017.10.005

Sardana, O., Goyal, R., Bedi, O. (2021). Molecular and pathobiological involvement of fetuin-A in the pathogenesis of NAFLD. Inflammopharmacology, 29(4), 1061-1074. https://doi.org/10.1007/s10787-021-00837-4

Gerst, F., Wagner, R., Kaiser, G., Panse, M., Heni, M., Machann, J., Bongers, M. N., Sartorius, T., Sipos, B., Fend, F., Thiel, C., Nadalin, S., Königsrainer, A., Stefan, N., Fritsche, A., Häring, H. U., Ullrich, S., & Siegel-Axel, D. (2017). Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia, 60(11), 2240-2251. https://doi.org/10.1007/s00125-017-4385-1

Chattopadhyay, D., Das, S., Guria, S., Basu, S., & Mukherjee, S. (2021). Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway. The Biochemical journal, 478(22), 4027-4043. https://doi.org/10.1042/BCJ20210442

Mukhuty, A., Fouzder, C., & Kundu, R. (2022). Fetuin-A excess expression amplifies lipid induced apoptosis and β-cell damage. Journal of cellular physiology, 237(1), 532-550. https://doi.org/10.1002/jcp.30499

Das, S., Chattopadhyay, D., Chatterjee, S. K., Mondal, S. A., Majumdar, S. S., Mukhopadhyay, S., Saha, N., Velayutham, R., Bhattacharya, S., & Mukherjee, S. (2021). Increase in PPARγ inhibitory phosphorylation by Fetuin-A through the activation of Ras-MEK-ERK pathway causes insulin resistance. Biochimica et biophysica acta. Molecular basis of disease, 1867(4), 166050. https://doi.org/10.1016/j.bbadis.2020.166050

Komsa-Penkova, R. S., Golemanov, G. M., Radionova, Z. V., Tonchev, P. T., Iliev, S. D., & Penkov, V. V. (2017). Fetuin-A – Alpha2-Heremans-Schmid Glycoprotein: From Structure to a Novel Marker of Chronic Diseases Part 1. Fetuin-A as a Calcium Chaperone and Inflammatory Marker. Journal of Biomedical and Clinical Research, 10(2), 90-97. https://doi.org/10.1515/jbcr-2017-0015

Rudloff, S., Janot, M., Rodriguez, S., Dessalle, K., Jahnen-Dechent, W., & Huynh-Do, U. (2021). Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nature communications, 12(1), 549. https://doi.org/10.1038/s41467-020-20832-7

Ebrahim Ali, R. H., Zamzam, M. S. A., El Nouwairy, H. E. E. D., & Ashour, W. M. (2022). Fetuin A effect on iron status and hepcidin level in adenine induced chronic kidney disease male rat model. Zagazig University Medical Journal, 28(4), 839-847. URL: https://zumj.journals.ekb.eg/article_214488.html

Stirnberg, M., Maurer, E., Arenz, K., Babler, A., Jahnen-Dechent, W., & Gütschow, M. (2015). Cell surface serine protease matriptase-2 suppresses fetuin-A/AHSG-mediated induction of hepcidin. Biological chemistry, 396(1), 81-93. https://doi.org/10.1515/hsz-2014-0120

Wahedi, M., Wortham, A. M., Kleven, M. D., Zhao, N., Jue, S., Enns, C. A., & Zhang, A. S. (2017). Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. The Journal of biological chemistry, 292(44), 18354-18371. https://doi.org/10.1074/jbc.M117.801795

Agarwal, A. K., & Yee, J. (2019). Hepcidin. Advances in chronic kidney disease, 26(4), 298-305. https://doi.org/10.1053/j.ackd.2019.04.005

Nemeth, E., & Ganz, T. (2023). Hepcidin and iron in health and disease. Annual review of medicine, 74, 261-277. https://doi.org/10.1146/annurev-med-043021-032816

Camaschella, C., Nai, A., & Silvestri, L. (2020). Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 105(2), 260. https://doi.org/10.3324/haematol.2019.232124

Weiss G., Ganz T., Goodnough L. T. (2021). Anemia of inflammation. Blood, 133(1), 40-50. https://doi.org/10.1182/blood-2018-06-856500

Anker, S. D., Kirwan, B. A., van Veldhuisen, D. J., Filippatos, G., Comin-Colet, J., Ruschitzka, F., Lüscher, T. F., Arutyunov, G. P., Motro, M., Mori, C., Roubert, B., Pocock, S. J., & Ponikowski, P. (2018). Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. European journal of heart failure, 20(1), 125-133. https://doi.org/10.1002/ejhf.823

Snook, J., Bhala, N., Beales, I. L. P., Cannings, D., Kightley, C., Logan, R. P., Pritchard, D. M., Sidhu, R., Surgenor, S., Thomas, W., Verma, A. M., & Goddard, A. F. (2021). British Society of Gastroenterology guidelines for the management of iron deficiency anaemia in adults. Gut, 70(11), 2030-2051. https://doi.org/10.1136/gutjnl-2021-325210

Lazoryshynets, V. V., Kovalenko, V. M., Potashev, S. V., Fedkiv, S. V., Rudenko, A. V., Vitovskiy, R. M., Sychov, O. S., Rudenko, S. A., Ivaniv, Yu. A., Krikunov, O. A., Mazur, O. A., Hrubyak, L. M., Rusnak, A. O., Osovska, N. Yu., Deyak, S. I., Verich, N. M., & Beshlyaga, V. M. (2020). Ekhokardiohrafichne kilkisne otsiniuvannia kamer sertsia u doroslykh. Praktychni rekomendatsii Asotsiatsii sertsevo-sudynnykh khirurhiv Ukrainy ta Ukrainskoho tovarystva kardiolohiv [Cardiac chamber quantification by echocardiography in adults: Recommendations from the Association of cardiovascular surgeons of Ukraine and Ukrainian society of cardiology]. Ukrainskyi zhurnal sertsevo-sudynnoi khirurhii, 4(41), 96-117. [in Ukrainian]. https://doi.org/10.30702/ujcvs/20.4112/096-117.16.12.22020

Faust, O., Hong, W., Loh, H. W., Xu, S., Tan, R. S., Chakraborty, S., Barua, P. D., Molinari, F., & Acharya, U. R. (2022). Heart rate variability for medical decision support systems: A review. Computers in biology and medicine, 145, 105407. https://doi.org/10.1016/j.compbiomed.2022.105407

Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K., Schmidt, G., & Yamamoto, Y. (2015). Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace, 17(9), 1341-1353. https://doi.org/10.1093/europace/euv015

Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in public health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258

Konovalova, M. O., & Mykhailovska, N. S. (2023). Vzaiemozviazok ferokinetychnykh pokaznykiv zi stanom kardialnoho remodeliuvannia u khvorykh na ishemichnu khvorobu sertsia iz suputnim zalizodefitsytom [The relationship between ferrokinetic parameters and the state of cardiac remodeling in patients with coronary artery disease with concomitant iron deficiency]. Pathologia, 20(1), 20-26. [in Ukrainian]. https://doi.org/10.14739/2310-1237.2023.1.275370

Lichtenauer, M., Wernly, B., Paar, V., Rohm, I., Jung, C., Yilmaz, A., Hoppe, U. C., Schulze, P. C., Kretzschmar, D., & Pistulli, R. (2018). Specifics of fetuin-A levels in distinct types of chronic heart failure. Journal of clinical laboratory analysis, 32(1), e22179. https://doi.org/10.1002/jcla.22179

Göçer, K., Aykan, A. Ç., Kılınç, M., & Göçer, N. S. (2020). Association of serum FGF-23, klotho, fetuin-A, osteopontin, osteoprotegerin and hs-CRP levels with coronary artery disease. Scandinavian journal of clinical and laboratory investigation, 80(4), 277-281. https://doi.org/10.1080/00365513.2020.1728786

Çakır, H., Kanat, S., Çakır, H., & Tenekecioğlu, E. (2022). Lower Serum Fetuin-A Levels are Associated with a Higher Ten-Year Mortality Risk in Patients with ST-Elevation Myocardial Infarction. Níveis mais Baixos de Fetuína-A Sérica estão Associados a um Maior Risco de Mortalidade em Dez Anos em Pacientes com Infarto do Miocárdio por Supradesnivelamento do Segmento ST. Arquivos brasileiros de cardiologia, 118(1), 14-21. https://doi.org/10.36660/abc.20201057

Feistritzer, H. J., Klug, G., Reinstadler, S. J., Gröber, M. T., Mair, J., Kirchmair, R., Henninger, B., Franz, W. M., & Metzler, B. (2015). Fetuin-A is related to infarct size, left ventricular function and remodelling after acute STEMI. Open heart, 2(1), e000244. https://doi.org/10.1136/openhrt-2015-000244

Albert, C. L., & Tang, W. (2018). Metabolic Biomarkers in Heart Failure. Heart Failure Clinics, 14(1), 109-118. https://doi.org/10.1016/j.hfc.2017.08.011

Gan, Y., Zhao, M., & Feng, J. (2021). Association of fetuin-A levels and left ventricular diastolic dysfunction in patients on haemodialysis. International urology and nephrology, 53(8), 1689-1694. https://doi.org/10.1007/s11255-021-02796-9

Zheng, J., Huang, M., Huang, Q., Chen, Q., & Chen, Z. (2021). The relationship between fetuin-A and coronary atherosclerotic heart disease (CHD) and CHD-related risk factors: A retrospective study. Medicine, 100(43), e27481. https://doi.org/10.1097/MD.0000000000027481

Jirak, P., Stechemesser, L., Moré, E., Franzen, M., Topf, A., Mirna, M., Paar, V., Pistulli, R., Kretzschmar, D., Wernly, B., Hoppe, U. C., Lichtenauer, M., & Salmhofer, H. (2019). Clinical implications of fetuin-A. Advances in clinical chemistry, 89, 79-130. https://doi.org/10.1016/bs.acc.2018.12.003

Pagan, L. U., Gatto, M., Martinez, P. F., Okoshi, K., & Okoshi, M. P. (2022). Biomarkers in Cardiovascular Disease: The Role of Fetuin-A. Biomarcadores em Doenças Cardiovasculares: O Papel da Fetuína-A. Arquivos brasileiros de cardiologia, 118(1), 22-23. https://doi.org/10.36660/abc.20210980

Torres-Arellano, J. M., Echeverría, J. C., Ávila-Vanzzini, N., Springall, R., Toledo, A., Infante, O., Bojalil, R., Cossío-Aranda, J. E., Fajardo, E., & Lerma, C. (2021). Cardiac Autonomic Response to Active Standing in Calcific Aortic Valve Stenosis. Journal of clinical medicine, 10(9), 2004. https://doi.org/10.3390/jcm10092004

Kryvenko, V. I., Kachan, I. S., Fedorova, O. P., Kolesnyk, M. Yu., Nepryadkina, I. V., Pachomova, S. P., Borodavko, O. I., & Borota, D. S. (2021). Kaltsynoz klapaniv sertsia: suchasnyi pohliad na problemu ta perspektyvy doslidzhen (ohliad literatury) [Heart valve calcinosis: a modern view on the problem and research prospects]. Praktykuiuchyi likar, (3), 15-21. [in Ukrainian]. Retrieved from: https://plr.com.ua/index.php/journal/article/view/651

Brandon, L., Connolly, N., Hensey, M., O’Connor, S., Kenny, R., Maree, A., & Cruz-Gonzalez, I. (2023). Cardiovascular Autonomic Dysfunction and its association with Aortic Stenosis. Medical Research Archives, 11(1). https://doi.org/10.18103/mra.v11i1.3495

Ng, H. Y., Hsueh, S. K., Lee, Y. T., Chiou, T. T., Huang, P. C., & Lee, C. T. (2017). Synergic Impact of Vascular Calcification and Low Autonomic Tone in Mortality of Hemodialysis Patients. Nephron, 137(2), 91-98. https://doi.org/10.1159/000477827

Published

2023-12-22

How to Cite

1.
Konovalova MO, Mykhailovska NS. The relationship between fetuin-A level and the clinical features of patients with coronary artery disease associated with iron deficiency. Pathologia [Internet]. 2023Dec.22 [cited 2025Jan.8];20(3):231-7. Available from: http://pat.zsmu.edu.ua/article/view/288735

Issue

Section

Original research