The role of mesenchymal stem cells in peripheral nerve regeneration
DOI:
https://doi.org/10.14739/2310-1237.2024.2.297836Keywords:
regeneration, mesenchymal stem cells, peripheral nerveAbstract
Taking into account the imperfect results of treatment of peripheral nerve injuries and despite the large number of already performed clinical and experimental studies on the regeneration of peripheral nerves, the search for new effective methods of treatment of this pathology remains relevant until now. Cell therapy is one of the innovative and promising therapeutic approaches in the field of nerve regeneration. Mesenchymal stem cells (MSCs) were first introduced in 1966 by Friedenstein and colleagues. This is a class of multipotent stem cells of mesodermal origin, which have low immunogenicity, but high capacity for self-renewal and multidirectional differentiation potential. They were found in almost all tissues. According to the International Society for Cell Therapy (ISCT, Vancouver, Canada), human MSCs express CD73, CD105, CD90 and lack hematopoietic stem cell markers (CD34, CD14, CD45, CD11b, CD79a, and HLA-DR).
There is no consensus regarding the main mechanism of action of MSCs in stimulating nerve regeneration, but in general, most likely, they perform a trophic function, inhibit proapoptotic pathways and enhance the intrinsic regenerative capacity of the nerve. The ability of MSCs to produce various immunoregulatory factors is also known, which leads to the reduction of an inadequate inflammatory response after nerve damage. MSCs can transdifferentiate into Schwann cells, acquire a Schwann-like phenotype, or stimulate the activity of endogenous Schwann cells, which are one of the key regulators of reparative nerve regeneration. MSCs also take part in the remyelination of damaged nerves due to the synthesis and release of myelin proteins MBP or P0. MSCs create an enhanced neuroprotective microenvironment that prevents nerve degeneration, supports axon growth, neurogenesis, and cellular metabolism. The property of stem cells to produce neurotrophic factors is also well known. It is interesting to note that endogenous stem cells, including those circulating in peripheral blood, are much less studied. A detailed study of various pharmacological, gene-modifying, or biomodifying methods of endogenous stem cell mobilization, their properties, and identification may be promising in regenerative medicine in general and peripheral nerve regeneration in particular.
References
Alvites RD, Branquinho MV, Sousa AC, Amorim I, Magalhães R, João F, et al. Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo. Stem Cells Int. 2021;2021:6613029. doi: https://doi.org/10.1155/2021/6613029
Grabovyi OM, Nevmerzhytska NM, Shepelev SE, Kondaurova HY. Dexamethasone and granulocyte colony-stimulating factor change the regenerative neuroma morphology. World of medicine and biology. 2023;0(4):187-92. doi: https://doi.org/10.26724/2079-8334-2023-4-86-187-192
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci. 2022;16:917587. doi: https://doi.org/10.3389/fnins.2022.917587
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia. 2021;69(2):235-54. doi: https://doi.org/10.1002/glia.23892
Carvalho CR, Reis RL, Oliveira JM. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Adv Exp Med Biol. 2020;1249:173-201. doi: https://doi.org/10.1007/978-981-15-3258-0_12
Molnár K, Nógrádi B, Kristóf R, Mészáros Á, Pajer K, Siklós L, et al. Motoneuronal inflammasome activation triggers excessive neuroinflammation and impedes regeneration after sciatic nerve injury. J Neuroinflammation. 2022;19(1):68. doi: https://doi.org/10.1186/s12974-022-02427-9
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve. 2020;61(4):449-459. doi: https://doi.org/10.1002/mus.26760
Lim EF, Hoghooghi V, Hagen KM, Kapoor K, Frederick A, Finlay TM, et al. Presence and activation of pro-inflammatory macrophages are associated with CRYAB expression in vitro and after peripheral nerve injury. J Neuroinflammation. 2021;18(1):82. doi: https://doi.org/10.1186/s12974-021-02108-z
Grabovyi OM, Nevmerzhytska NM, Alyokhin AB, Kostynskyi HB, Rytikova NV. [Modulation of the tissue composition of regenerative neuroma by dexamethasone and granulocyte colony-stimulating factor]. Pathologia. 2023;20(2):118-25. Ukrainian. 10.14739/2310-1237.2023.2.285124
Tang X, Li Q, Huang T, Zhang H, Chen X, Ling J, et al. Regenerative Role of T Cells in Nerve Repair and Functional Recovery. Front Immunol. 2022;13:923152. doi: https://doi.org/10.3389/fimmu.2022.923152
Mokarram N, Dymanus K, Srinivasan A, Lyon JG, Tipton J, Chu J, et al. Immunoengineering nerve repair. Proc Natl Acad Sci U S A. 2017;114(26):E5077-E5084. doi: https://doi.org/10.1073/pnas.1705757114
Ehmedah A, Nedeljkovic P, Dacic S, Repac J, Draskovic-Pavlovic B, Vučević D, et al. Effect of Vitamin B Complex Treatment on Macrophages to Schwann Cells Association during Neuroinflammation after Peripheral Nerve Injury. Molecules. 2020;25(22):5426. doi: https://doi.org/10.3390/molecules25225426
Wang AY, Loh CY, Shen HH, Hsieh SY, Wang IK, Lee CM, et al. Human Wharton’s Jelly Mesenchymal Stem Cell-Mediated Sciatic Nerve Recovery Is Associated with the Upregulation of Regulatory T Cells. Int J Mol Sci. 2020;21(17):6310. doi: https://doi.org/10.3390/ijms21176310
Stratton JA, Holmes A, Rosin NL, Sinha S, Vohra M, Burma NE, et al. Macrophages Regulate Schwann Cell Maturation after Nerve Injury. Cell Rep. 2018;24(10):2561-72.e6. doi: https://doi.org/10.1016/j.celrep.2018.08.004
Dong X, Liu S, Yang Y, Gao S, Li W, Cao J, et al. Aligned microfiber-induced macrophage polarization to guide schwann-cell-enabled peripheral nerve regeneration. Biomaterials. 2021;272:120767. doi: https://doi.org/10.1016/j.biomaterials.2021.120767
Yi S, Zhang Y, Gu X, Huang L, Zhang K, Qian T, et al. Application of stem cells in peripheral nerve regeneration. Burns Trauma. 2020;8:tkaa002. doi: https://doi.org/10.1093/burnst/tkaa002
Bunn SJ, Lai A, Li J. DC Electric Fields Induce Perpendicular Alignment and Enhanced Migration in Schwann Cell Cultures. Ann Biomed Eng. 2019;47(7):1584-95. doi: https://doi.org/10.1007/s10439-019-02259-4
Hartlehnert M, Derksen A, Hagenacker T, Kindermann D, Schäfers M, Pawlak M, et al. Schwann cells promote post-traumatic nerve inflammation and neuropathic pain through MHC class II. Sci Rep. 2017;7(1):12518. doi: https://doi.org/10.1038/s41598-017-12744-2
Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, et al. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci. 2021;22(2):572. doi: https://doi.org/10.3390/ijms22020572
Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci. 2017;18(1):94. doi: https://doi.org/10.3390/ijms18010094
Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci. 2020;256:118002. doi: https://doi.org/10.1016/j.lfs.2020.118002
Zhang RC, Du WQ, Zhang JY, Yu SX, Lu FZ, Ding HM, et al. Mesenchymal stem cell treatment for peripheral nerve injury: a narrative review. Neural Regen Res. 2021;16(11):2170-6. doi: https://doi.org/10.4103/1673-5374.310941
Kizilay Z, Aktas S, Kahraman Cetin N, Bakay Ilhan D, Ersoy G, Erken HA. Effect of systemic application of bone marrow-derived mesenchymal stem cells on healing of peripheral nerve injury in an experimental sciatic nerve injury model. Turk Neurosurg. 2017 Jul 12. doi: https://doi.org/10.5137/1019-5149.JTN.20811-17.1
Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med. 2019;23(4):2822-35. doi: https://doi.org/10.1111/jcmm.14190
Mitsuzawa S, Zhao C, Ikeguchi R, Aoyama T, Kamiya D, Ando M, et al. Pro-angiogenic scaffold-free Bio three-dimensional conduit developed from human induced pluripotent stem cell-derived mesenchymal stem cells promotes peripheral nerve regeneration. Sci Rep. 2020;10(1):12034. doi: https://doi.org/10.1038/s41598-020-68745-1
Nevmerzhytska NM, Yaremenko LM, Chuhray SM, Grabovyi OM. Treatment methods for peripheral nerve injuries (a literature review). Zaporozhye medical journal. 2023;25(4):365-9. doi: https://doi.org/10.14739/2310-1210.2023.4.273073
Bojanic C, To K, Zhang B, Mak C, Khan WS. Human umbilical cord derived mesenchymal stem cells in peripheral nerve regeneration. World J Stem Cells. 2020 Apr 26;12(4):288-302. doi: https://doi.org/10.4252/wjsc.v12.i4.288
Mao Q, Nguyen PD, Shanti RM, Shi S, Shakoori P, Zhang Q, et al. Gingiva-Derived Mesenchymal Stem Cell-Extracellular Vesicles Activate Schwann Cell Repair Phenotype and Promote Nerve Regeneration. Tissue Eng Part A. 2019;25(11-12):887-900. doi: https://doi.org/10.1089/ten.TEA.2018.0176
Wang YH, Guo YC, Wang DR, Liu JY, Pan J. Adipose Stem Cell-Based Clinical Strategy for Neural Regeneration: A Review of Current Opinion. Stem Cells Int. 2019;2019:8502370. doi: https://doi.org/10.1155/2019/8502370
Chen X, Wang S, Cao W. Mesenchymal stem cell-mediated immunomodulation in cell therapy of neurodegenerative diseases. Cell Immunol. 2018;326:8-14. doi: https://doi.org/10.1016/j.cellimm.2017.06.006
Mathot F, Shin AY, Van Wijnen AJ. Targeted stimulation of MSCs in peripheral nerve repair. Gene. 2019;710:17-23. doi: https://doi.org/10.1016/j.gene.2019.02.078
De la Rosa MB, Kozik EM, Sakaguchi DS. Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. Adv Exp Med Biol. 2018;1119:41-71. doi: https://doi.org/10.1007/5584_2018_254
Bucan V, Vaslaitis D, Peck CT, Strauß S, Vogt PM, Radtke C. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol Neurobiol. 2019;56(3):1812-24. doi: https://doi.org/10.1007/s12035-018-1172-z
Sharma AD, Wiederin J, Uz M, Ciborowski P, Mallapragada SK, Gendelman HE, et al. Proteomic analysis of mesenchymal to Schwann cell transdifferentiation. J Proteomics. 2017;165:93-101. doi: https://doi.org/10.1016/j.jprot.2017.06.011
Rao Z, Lin Z, Song P, Quan D, Bai Y. Biomaterial-Based Schwann Cell Transplantation and Schwann Cell-Derived Biomaterials for Nerve Regeneration. Front Cell Neurosci. 2022 Jun 28;16:926222. doi: https://doi.org/10.3389/fncel.2022.926222
Zhang R, Rosen JM. The role of undifferentiated adipose-derived stem cells in peripheral nerve repair. Neural Regen Res. 2018;13(5):757-63. doi: https://doi.org/10.4103/1673-5374.232457
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74(13):2345-60. doi: https://doi.org/10.1007/s00018-017-2473-5
Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, et al. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther. 2022;13(1):18. doi: https://doi.org/10.1186/s13287-021-02690-2
Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression – implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356-71. doi: https://doi.org/10.1038/s41571-019-0175-7
Savage PA, Klawon DEJ, Miller CH. Regulatory T Cell Development. Annu Rev Immunol. 2020;38:421-53. doi: https://doi.org/10.1146/annurev-immunol-100219-020937
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, et al. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol. 2018;14(9):559-68. doi: https://doi.org/10.1038/s41582-018-0028-5
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53(1):e12712. doi: https://doi.org/10.1111/cpr.12712
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater. 2018;7(14):e1701046. doi: https://doi.org/10.1002/adhm.201701046
Cintron-Colon AF, Almeida-Alves G, VanGyseghem JM, Spitsbergen JM. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries. Neural Regen Res. 2022;17(4):748-53. doi: https://doi.org/10.4103/1673-5374.322446
El Ouaamari Y, Van den Bos J, Willekens B, Cools N, Wens I. Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. Int J Mol Sci. 2023;24(4):3866. doi: https://doi.org/10.3390/ijms24043866
Braschi C, Capsoni S, Narducci R, Poli A, Sansevero G, Brandi R, et al. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res. 2021;33(5):1223-38. doi: https://doi.org/10.1007/s40520-020-01646-5
Khazaei M, Ahuja CS, Nakashima H, Nagoshi N, Li L, Wang J, et al. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents. Sci Transl Med. 2020;12(525):eaau3538. doi: https://doi.org/10.1126/scitranslmed.aau3538
Chao MV, Bothwell MA, Ross AH, Koprowski H, Lanahan AA, Buck CR, et al. Gene transfer and molecular cloning of the human NGF receptor. Science. 1986;232(4749):518-21. doi: https://doi.org/10.1126/science.3008331
Numakawa T, Odaka H. Roles of Trk receptors, tyrosine kinase receptors for neurotrophins, in the developing CNS. In: Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders. Elsevier; 2023. p. 79-15. doi: https://doi.org/10.1016/B978-0-443-18677-6.00008-7
Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021;17(1):34-46. doi: https://doi.org/10.1038/s41584-020-00528-4
Cuello AC. Rita Levi-Montalcini, NGF Metabolism in Health and in the Alzheimer’s Pathology. Adv Exp Med Biol. 2021;1331:119-44. doi: https://doi.org/10.1007/978-3-030-74046-7_9
Sacchetti M, Bruscolini A, Lambiase A. Neurotrophic factors and nerve growth factor in ocular allergy. Curr Opin Allergy Clin Immunol. 2019;19(5):510-6. doi: https://doi.org/10.1097/ACI.0000000000000555
Liao CF, Chen CC, Lu YW, Yao CH, Lin JH, Way TD, et al. Effects of endogenous inflammation signals elicited by nerve growth factor, interferon-γ, and interleukin-4 on peripheral nerve regeneration. J Biol Eng. 2019;13:86. doi: https://doi.org/10.1186/s13036-019-0216-x
Liu Y, Wang H. Peripheral nerve injury induced changes in the spinal cord and strategies to counteract/enhance the changes to promote nerve regeneration. Neural Regen Res. 2020;15(2):189-98. doi: https://doi.org/10.4103/1673-5374.265540
Zha K, Yang Y, Tian G, Sun Z, Yang Z, Li X, et al. Nerve growth factor (NGF) and NGF receptors in mesenchymal stem/stromal cells: Impact on potential therapies. Stem Cells Transl Med. 2021;10(7):1008-20. doi: https://doi.org/10.1002/sctm.20-0290
Pua LJ, Mai CW, Chung FF, Khoo AS, Leong CO, Lim WM, et al. Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma. Int J Mol Sci. 2022;23(3):1108. doi: https://doi.org/10.3390/ijms23031108
Su H, Xu F, Sun H, Fu X, Zhao Y. Preparation and Evaluation of BDNF Composite Conduits for Regeneration of Sciatic Nerve Defect in Rats. J Pharm Sci. 2020;109(7):2189-95. doi: https://doi.org/10.1016/j.xphs.2020.03.027
Ahmed S, Kwatra M, Gawali B, Panda SR, Naidu VG. Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis. 2021;26(1-2):52-70. doi: https://doi.org/10.1007/s10495-020-01645-x
Jones EJ, Chiou SY, Atherton PJ, Phillips BE, Piasecki M. Ageing and exercise-induced motor unit remodelling. J Physiol. 2022;600(8):1839-49. doi: https://doi.org/10.1113/JP281726
Pradhan J, Noakes PG, Bellingham MC. The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Front Cell Neurosci. 2019;13:368. doi: https://doi.org/10.3389/fncel.2019.00368
McGregor CE, English AW. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci. 2019;12:522. doi: https://doi.org/10.3389/fncel.2018.00522
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76(17):3323-48. doi: https://doi.org/10.1007/s00018-019-03125-1
Shekari A, Mahadeo C, Sanwalka N, Fahnestock M. Neurotrophins and cell death. In: Neurodevelopmental Pediatrics. Cham: Springer International Publishing; 2023. p. 55-75. doi: https://doi.org/10.1007/978-3-031-20792-1_4
Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, et al. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci. 2022;23(2):918. doi: https://doi.org/10.3390/ijms23020918
Hanwright PJ, Qiu C, Rath J, Zhou Y, von Guionneau N, Sarhane KA, et al. Sustained IGF-1 delivery ameliorates effects of chronic denervation and improves functional recovery after peripheral nerve injury and repair. Biomaterials. 2022;280:121244. doi: https://doi.org/10.1016/j.biomaterials.2021.121244
Tan Q, Li J, Yin Y, Shao W. The Role of Growth Factors in the Repair of Motor Injury. Front Pharmacol. 2022;13:898152. doi: https://doi.org/10.3389/fphar.2022.898152
Ahmad SS, Ahmad K, Lee EJ, Lee YH, Choi I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells. 2020;9(8):1773. doi: https://doi.org/10.3390/cells9081773
Chidambaram S, Velloso FJ, Rothbard DE, Deshpande K, Cajuste Y, Snyder KM, et al. Subventricular zone adult mouse neural stem cells require insulin receptor for self-renewal. Stem Cell Reports. 2022;17(6):1411-27. doi: https://doi.org/10.1016/j.stemcr.2022.04.007
Guo H, Chen P, Luo R, Zhang Y, Xu X, Gou X. The Roles of Ciliary Neurotrophic Factor – from Neuronutrition to Energy Metabolism. Protein Pept Lett. 2022;29(10):815-28. doi: https://doi.org/10.2174/0929866529666220905105800
Liu X, Hao F, Hao P, Zhang J, Wang L, You SW, et al. Regeneration and functional recovery of the completely transected optic nerve in adult rats by CNTF-chitosan. Signal Transduct Target Ther. 2023;8(1):81. doi: https://doi.org/10.1038/s41392-022-01289-0
Mashanov V, Alwan A, Kim MW, Lai D, Poerio A, Ju YM, et al. Synergistic effect of CNTF and GDNF on directed neurite growth in chick embryo dorsal root ganglia. PLoS One. 2020;15(10):e0240235. doi: https://doi.org/10.1371/journal.pone.0240235
Ma F, Wang H, Yang X, Wu Y, Liao C, Xie B, et al. Controlled release of ciliary neurotrophic factor from bioactive nerve grafts promotes nerve regeneration in rats with facial nerve injuries. J Biomed Mater Res A. 2022;110(4):788-96. doi: https://doi.org/10.1002/jbm.a.37327
Ji-Wei S, Zi-Ying L, Xiang T, Yang Y, Ju-Fen Z, Qing-Hua Z. CNTF induces Clcf1 in astrocytes to promote the differentiation of oligodendrocyte precursor cells. Biochem Biophys Res Commun. 2022;636(Pt 1):170-7. doi: https://doi.org/10.1016/j.bbrc.2022.10.013
Porzionato A, Barbon S, Stocco E, Dalzoppo D, Contran M, De Rose E, et al. Development of Oxidized Polyvinyl Alcohol-Based Nerve Conduits Coupled with the Ciliary Neurotrophic Factor. Materials (Basel). 2019;12(12):1996. doi: https://doi.org/10.3390/ma12121996
Wen SY, Li AM, Mi KQ, Wang RZ, Li H, Liu HX, et al. In vitro neuroprotective effects of ciliary neurotrophic factor on dorsal root ganglion neurons with glutamate-induced neurotoxicity. Neural Regen Res. 2017;12(10):1716-23. doi: https://doi.org/10.4103/1673-5374.217352
Cui W, Liu CX, Wang J, Zhang YC, Shen Q, Feng ZH, et al. An oleanolic acid derivative reduces denervation-induced muscle atrophy via activation of CNTF-mediated JAK2/STAT3 signaling pathway. Eur J Pharmacol. 2019;861:172612. doi: https://doi.org/10.1016/j.ejphar.2019.172612
Fan L, Xiong Y, Fu Z, Xu D, Wang L, Chen Y, et al. Polyaniline promotes peripheral nerve regeneration by enhancement of the brainderived neurotrophic factor and ciliary neurotrophic factor expression and activation of the ERK1/2/MAPK signaling pathway. Mol Med Rep. 2017;16(5):7534-40. doi: https://doi.org/10.3892/mmr.2017.7534
Hu Z, Deng N, Liu K, Zhou N, Sun Y, Zeng W. CNTF-STAT3-IL-6 Axis Mediates Neuroinflammatory Cascade across Schwann Cell-Neuron-Microglia. Cell Rep. 2020;31(7):107657. doi: https://doi.org/10.1016/j.celrep.2020.107657
Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res. 2020;382(1):47-56. doi: https://doi.org/10.1007/s00441-020-03287-6
Nicoletti VG, Pajer K, Calcagno D, Pajenda G, Nógrádi A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules. 2022;12(8):1015. doi: https://doi.org/10.3390/biom12081015
Duarte Azevedo M, Sander S, Tenenbaum L. GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease. J Clin Med. 2020;9(2):456. doi: https://doi.org/10.3390/jcm9020456
Eggers R, de Winter F, Arkenaar C, Tannemaat MR, Verhaagen J. Enhanced regeneration and reinnervation following timed GDNF gene therapy in a cervical ventral root avulsion. Exp Neurol. 2019;321:113037. doi: https://doi.org/10.1016/j.expneurol.2019.113037
Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors – Relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(Pt B):80-9. doi: https://doi.org/10.1016/j.nbd.2016.01.021
Lackington WA, Kočí Z, Alekseeva T, Hibbitts AJ, Kneafsey SL, Chen G, et al. Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. J Control Release. 2019;304:51-64. doi: https://doi.org/10.1016/j.jconrel.2019.05.001
El Soury M, Gambarotta G. Soluble neuregulin-1 (NRG1): a factor promoting peripheral nerve regeneration by affecting Schwann cell activity immediately after injury. Neural Regen Res. 2019;14(8):1374-5. doi: https://doi.org/10.4103/1673-5374.253516
Fornasari BE, El Soury M, Nato G, Fucini A, Carta G, Ronchi G, et al. Fibroblasts Colonizing Nerve Conduits Express High Levels of Soluble Neuregulin1, a Factor Promoting Schwann Cell Dedifferentiation. Cells. 2020;9(6):1366. doi: https://doi.org/10.3390/cells9061366
Ronchi G, Raimondo S. Chronically denervated distal nerve stump inhibits peripheral nerve regeneration. Neural Regen Res. 2017;12(5):739-40. doi: https://doi.org/10.4103/1673-5374.206638
Farkas JE, Monaghan JR. A brief history of the study of nerve dependent regeneration. Neurogenesis (Austin). 2017;4(1):e1302216. doi: https://doi.org/10.1080/23262133.2017.1302216
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (SeeThe Effect of Open Access).