Pathogenetic links between cognitive impairment in arterial hypertension and anatomical and functional characteristics of hippocampal morphology and blood supply (a literature review)

Authors

DOI:

https://doi.org/10.14739/2310-1237.2024.2.299090

Keywords:

arterial hypertension, cognitive functions, morphological and functional state of the hippocampus

Abstract

Aim. To update the study on morphological changes in the hippocampal structure and blood supply in conditions of persistent arterial hypertension with a focus on the cognitive sphere state.

Materials and methods. The authors independently searched and selected scientific literature for a systematic review in the PubMed, Scopus, and Cochrane databases using the following keywords “arterial hypertension”, “cognitive functions”, “morphological and functional state of the hippocampus” in full-text articles in English and Ukrainian based on the study results with a level of evidence I–III.

Results. The authors have conducted a systematic review of articles and scientific publications in PubMed, Scopus and Cochrane databases. The information of the hippocampal structure, blood supply, functions and importance for the generation of human cognitive performance in health and in conditions of persistent arterial hypertension has been processed.

Conclusions. The current research results allow asserting that the hippocampus plays an important role in combining environmental signals and creating an integral and unified perception in the spatial and temporal domains. The performance efficiency depends on cellular signaling and stability, adequate blood supply, neurotransmitter balance, and the character of a receptor landscape. Experimental studies and clinical observations show cerebral arteriole reconstruction and constriction as well as decreased NO bioavailability in the hippocampus induced by chronic arterial hypertension to compensate for excessive pressure and increased blood flow pulsatility and to protect microvessels from damage. Increased vasoconstriction results in hypoperfusion and neuronal damage, which is most obvious in the hippocampal CA1 and CA3 areas and visualized as a reduced number of chaotically scattered cells with cytoplasmic vacuoles, nuclear pyknosis and nucleolysis.

Author Biographies

A. O. Svitlytskyi, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Associate Professor of the Department of Human Anatomy, Operative Surgery and Topographic Anatomy

I. F. Bielenichev, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

PhD, DSc, Professor, Head of the Department of Pharmacology and Medical Formulation with Course of Normal Physiology

O. V. Hancheva, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Pathological Physiology with the Course of Normal Physiology

T. A. Hrekova, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Associate Professor of the Department of Pathological Physiology with the Course of Normal Physiology

References

Lu Y, Lan T. Global, regional, and national burden of hypertensive heart disease during 1990-2019: an analysis of the global burden of disease study 2019. BMC Public Health. 2022;22(1):841. doi: https://doi.org/https://doi.org/10.1186/s12889-022-13271-0

Radchenko GD, Rekovets OL, Sirenko YM. [Prognosis and risk factors for the adverse course of the disease in patients with arterial hypertension and its resistant form]. Ukrainian therapeutical journal. 2023;0(1):13-21. Ukrainian. doi: https://doi.org/https://doi.org/10.30978/UTJ2023-1-13

Graff-Radford J. Vascular Cognitive Impairment. CONTINUUM: Lifelong Learning in Neurology. 2019;25(1):147-64. doi: https://doi.org/https://doi.org/10.1212/CON.0000000000000684

Canavan M, O'Donnell MJ. Hypertension and Cognitive Impairment: A Review of Mechanisms and Key Concepts. Front Neurol. 2022;13:821135. doi: https://doi.org/https://doi.org/10.3389/fneur.2022.821135

Liu C, Todorova R, Tang W, Oliva A, Fernandez-Ruiz A. Associative and predictive hippocampal codes support memory-guided behaviors. Science. 2023;382(6668):eadi8237. doi: https://doi.org/https://doi.org/10.1126/science.adi8237

Quian Quiroga R. An integrative view of human hippocampal function: Differences with other species and capacity considerations. Hippocampus. 2023;33(5):616-34. doi: https://doi.org/https://doi.org/10.1002/hipo.23527

Lu SY, Fu CL, Liang L, Yang B, Shen W, Wang QW, et al. miR-218-2 regulates cognitive functions in the hippocampus through complement component 3-dependent modulation of synaptic vesicle release. Proc Natl Acad Sci U S A. 2021;118(14):e2021770118. doi: https://doi.org/https://doi.org/10.1073/pnas.2021770118

Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol. 2020;49(1):3-16. doi: https://doi.org/https://doi.org/10.1111/ahe.12496

Fares J, Bou Diab Z, Nabha S, Fares Y. Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci. 2019;129(6):598-611. doi: https://doi.org/https://doi.org/10.1080/00207454.2018.1545771

van Staalduinen EK, Zeineh MM. Medial Temporal Lobe Anatomy. Neuroimaging Clin N Am. 2022;32(3):475-89. doi: https://doi.org/https://doi.org/10.1016/j.nic.2022.04.012

Ezama L, Hernández-Cabrera JA, Seoane S, Pereda E, Janssen N. Functional connectivity of the hippocampus and its subfields in resting-state networks. Eur J Neurosci. 2021;53(10):3378-93. doi: https://doi.org/https://doi.org/10.1111/ejn.15213

Gandolfi D, Mapelli J, Solinas SM, Triebkorn P, D'Angelo E, Jirsa V, et al. Full-scale scaffold model of the human hippocampus CA1 area. Nat Comput Sci. 2023;3(3):264-76. doi: https://doi.org/https://doi.org/10.1038/s43588-023-00417-2

Takamiya S, Shiotani K, Ohnuki T, Osako Y, Tanisumi Y, Yuki S, et al. Hippocampal CA1 Neurons Represent Positive Feedback During the Learning Process of an Associative Memory Task. Front Syst Neurosci. 2021;15:718619. doi: https://doi.org/https://doi.org/10.3389/fnsys.2021.718619

Tzakis N, Holahan MR. Social Memory and the Role of the Hippocampal CA2 Region. Front Behav Neurosci. 2019;13:233. doi: https://doi.org/https://doi.org/10.3389/fnbeh.2019.00233

Delgorio PL, Hiscox LV, Daugherty AM, Sanjana F, McIlvain G, Pohlig RT, et al. Structure-Function Dissociations of Human Hippocampal Subfield Stiffness and Memory Performance. J Neurosci. 2022;42(42):7957-68. doi: https://doi.org/https://doi.org/10.1523/JNEUROSCI.0592-22.2022

Chauhan P, Rathawa A, Jethwa K, Mehra S. The Anatomy of the Cerebral Cortex. In: Pluta R, editor. Cerebral Ischemia. Exon Publications [Internet]. 2021 Nov 6;1-16. Available from: https://doi.org/10.36255/exonpublications.cerebralischemia.2021.cerebralcortex

Matsumoto N, Kitanishi T, Mizuseki K. The subiculum: Unique hippocampal hub and more. Neurosci Res. 2019;143:1-12. doi: https://doi.org/https://doi.org/10.1016/j.neures.2018.08.002

Croft T, Bell D, Weerakkody Y, Subiculum. Reference article, Radiopaedia.org. 2017 Nov 22. doi: https://doi.org/https://doi.org/10.53347/rID-56790

Manjón JV, Romero JE, Coupe P. A novel deep learning based hippocampus subfield segmentation method. Sci Rep. 2022;12(1):1333. doi: https://doi.org/https://doi.org/10.1038/s41598-022-05287-8

Imbrosci B, Nitzan N, McKenzie S, Donoso JR, Swaminathan A, Böhm C, et al. Subiculum as a generator of sharp wave-ripples in the rodent hippocampus. Cell Rep. 2021;35(3):109021. doi: https://doi.org/https://doi.org/10.1016/j.celrep.2021.109021

Obenhaus HA, Zong W, Jacobsen RI, Rose T, Donato F, Chen L, et al. Functional network topography of the medial entorhinal cortex. Proc Natl Acad Sci U S A. 2022;119(7):e2121655119. doi: https://doi.org/https://doi.org/10.1073/pnas.2121655119

Gerlei KZ, Brown CM, Sürmeli G, Nolan MF. Deep entorhinal cortex: from circuit organization to spatial cognition and memory. Trends Neurosci. 2021;44(11):876-87. doi: https://doi.org/https://doi.org/10.1016/j.tins.2021.08.003

Haładaj R. Anatomical variations of the dentate gyrus in normal adult brain. Surg Radiol Anat. 2020;42(2):193-9. doi: https://doi.org/https://doi.org/10.1007/s00276-019-02298-5

Aery Jones EA, Rao A, Zilberter M, Djukic B, Bant JS, Gillespie AK, et al. Dentate gyrus and CA3 GABAergic interneurons bidirectionally modulate signatures of internal and external drive to CA1. Cell Rep. 2021;37(13):110159. doi: https://doi.org/https://doi.org/10.1016/j.celrep.2021.110159

Sun D, Mei L, Xiong WC. Dorsal Dentate Gyrus, a Key Regulator for Mood and Psychiatric Disorders. Biol Psychiatry. 2023;93(12):1071-80. doi: https://doi.org/https://doi.org/10.1016/j.biopsych.2023.01.005

Berdugo-Vega G, Dhingra S, Calegari F. Sharpening the blades of the dentate gyrus: how adult-born neurons differentially modulate diverse aspects of hippocampal learning and memory. EMBO J. 2023;42(22):e113524. doi: https://doi.org/https://doi.org/10.15252/embj.2023113524

Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, et al. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci. 2023;24(8):502-17. doi: https://doi.org/https://doi.org/10.1038/s41583-023-00710-z

Spallazzi M, Dobisch L, Becke A, Berron D, Stucht D, Oeltze-Jafra S, et al. Hippocampal vascularization patterns: A high-resolution 7 Tesla time-of-flight magnetic resonance angiography study. Neuroimage Clin. 2019;21:101609. doi: https://doi.org/https://doi.org/10.1016/j.nicl.2018.11.019

D'Souza D, O'Shea P, Smith D, et al. Brain arterial vascular territories. Reference article, Radiopaedia.org [cited 2024 Jul 2]. Available from: https://doi.org/10.53347/rID-1085

Johnson AC. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke. 2023;54(3):673-85. doi: https://doi.org/https://doi.org/10.1161/STROKEAHA.122.038263

Isolan GR, Stefani MA, Schneider FL, Claudino HA, Yu YH, Choi GG, et al. Hippocampal vascularization: Proposal for a new classification. Surg Neurol Int. 2020;11:378. doi: https://doi.org/https://doi.org/10.25259/SNI_708_2020

Kier EL, Conlogue GJ. Comparative anatomy of the middle cerebral artery, rhinal and endorhinal sulci, piriform lobe, entorhinal cortex, olfactory tubercule, anterior perforate substance, and hippocampus: A dissection study. Anat Rec (Hoboken). 2023;306(8):2030-2043. doi: https://doi.org/https://doi.org/10.1002/ar.25124

Piskorowski RA, Chevaleyre V. Hippocampal area CA2: interneuron disfunction during pathological states. Front Neural Circuits. 2023;17:1181032. doi: https://doi.org/https://doi.org/10.3389/fncir.2023.1181032

Johnson AC, Miller JE, Cipolla MJ. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab. 2020;40(4):845-59. doi: https://doi.org/https://doi.org/10.1177/0271678X19848510

Sible IJ, Nation DA. Blood Pressure Variability and Cerebral Perfusion Decline: A Post Hoc Analysis of the SPRINT MIND Trial. J Am Heart Assoc. 2023;12(12):e029797. doi: https://doi.org/https://doi.org/10.1161/JAHA.123.029797

Glodzik L, Rusinek H, Tsui W, Pirraglia E, Kim HJ, Deshpande A, et al. Different Relationship Between Systolic Blood Pressure and Cerebral Perfusion in Subjects With and Without Hypertension. Hypertension. 2019;73(1):197-205. doi: https://doi.org/https://doi.org/10.1161/HYPERTENSIONAHA.118.11233

Escobar I, Xu J, Jackson CW, Perez-Pinzon MA. Altered Neural Networks in the Papez Circuit: Implications for Cognitive Dysfunction after Cerebral Ischemia. J Alzheimers Dis. 2019;67(2):425-46. doi: https://doi.org/https://doi.org/10.3233/JAD-180875

Ito Y, Nagoya H, Yamazato M, Asano Y, Sawada M, Shimazu T, et al. The Effect of Aging on Nitric Oxide Production during Cerebral Ischemia and Reperfusion in Wistar Rats and Spontaneous Hypertensive Rats: An In Vivo Microdialysis Study. Int J Mol Sci. 2023;24(16):12749. doi: https://doi.org/https://doi.org/10.3390/ijms241612749

González Fuentes J, Insausti Serrano R, Cebada Sánchez S, Lagartos Donate MJ, Rivas Infante E, Arroyo Jiménez MD, et al. Neuropeptides in the developing human hippocampus under hypoxic-ischemic conditions. J Anat. 2021;239(4):856-68. doi: https://doi.org/https://doi.org/10.1111/joa.13458

Lee HG, Kim HS, An H, Baek K, Lee JM, Yim MJ, et al. Antihypertensive Effects of IGTGIPGIW Peptide Purified from Hippocampus abdominalis: p-eNOS and p-AKT Stimulation in EA.hy926 Cells and Lowering of Blood Pressure in SHR Model. Mar Drugs. 2022;20(6):354. doi: https://doi.org/https://doi.org/10.3390/md20060354

Denver P, D'Adamo H, Hu S, Zuo X, Zhu C, Okuma C, et al. A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease. Front Physiol. 2019;10:1269. doi: https://doi.org/https://doi.org/10.3389/fphys.2019.01269

Fang C, Magaki SD, Kim RC, Kalaria RN, Vinters HV, Fisher M. Arteriolar neuropathology in cerebral microvascular disease. Neuropathol Appl Neurobiol. 2023;49(1):e12875. doi: https://doi.org/https://doi.org/10.1111/nan.12875

Lin Z, Lu Y, Li S, Li Y, Li H, Li L, et al. Effect of eplerenone on cognitive impairment in spontaneously hypertensive rats. Am J Transl Res. 2022;14(6):3864-78.

Additional Files

Published

2024-08-30

How to Cite

1.
Svitlytskyi AO, Bielenichev IF, Hancheva OV, Hrekova TA. Pathogenetic links between cognitive impairment in arterial hypertension and anatomical and functional characteristics of hippocampal morphology and blood supply (a literature review). Pathologia [Internet]. 2024Aug.30 [cited 2024Nov.21];21(2):162-9. Available from: http://pat.zsmu.edu.ua/article/view/299090