Nuclear factor of activated T-cells (NFATC) as a possible diagnostic and prognostic marker in congenital valvular diseases and myocardial hypertrophy

Authors

DOI:

https://doi.org/10.14739/2310-1237.2015.1.42815

Keywords:

Сongenital Heart Defects, Left Ventricular Hypertrophy, Genetic Polymorphism, NFATC Transcription Factors

Abstract

Aim. The nuclear factor of activated T-cells (NFATc 1-4) family gene expression against the background of cardiovascular disorders, accompanying both congenital heart diseases (mainly ones involving valvular defects) and arterial hypertension, is adaptive and stress-induced by the respective hemodynamic stress.

Results. In this regard, given the fact that these proteins play a critical role in both formation of the cardiac structures and, at the same time, development of pathological myocardial and vascular wall hypertrophy, they, along with the signaling activating factors, can be regarded as quite promising biological markers for early clinical prediction of development of the cardiovascular disorders in patients with certain congenital heart diseases (especially with valve anomalies) or hypertension.

References

Benson, D. Woodrow. (2010) Genetic Origins of Pediatric Heart Disease. Pediat. Cardiol., 31, 422–429. doi: 10.1007/s00246-009-9607-y.

Tzemos, N., Therrien, J., Yip, J., Thanassoulis, G., Tremblay, S., Jamorski, M. T., et al. (2008) Outcomes in Adults With Bicuspid Aortic Valves. JAMA, 300(11), 1317–1325. doi: 10.1001/jama.300.11.1317.

Egorova, A. D., Khedoe, P. P., Goumans, M. J., Yoder, B. K., Nauli, S. M., Dijke, P., et al. (2011) Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ. Res, 108, 1093–1101. doi: 10.1161/CIRCRESAHA.110.231860.

Pompa, J. L., & Epstein, J. A. (2012) Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell., 22, 244–254. doi: 10.1016/j.devcel.2012.01.014.

Yamada M., Revelli, J. P., Eichele, G., Barron, M., & Schwartz, R. J.(2000) Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: Evidence for BMP2 induction of Tbx2. Dev Biol., 228, 95–105. doi:10.1006/dbio.2000.9927.

Singh, M. K., Christoffels, V. M., Dias, J. M., Trowe, M. O., Petry, M., Schuster-Gossler, K., et al. (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development, 132, 2697–2707.

LunaZurita, L., Prados, B., GregBessa, J., Luxan, G., delMonte, G., Benguria, A., et al. (2010) Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest, 120, 3493–3507. doi: 10.1172/JCI42666.

Lim, J., & Thiery, J. P. (2012) Epithelial-mesenchymal transitions: Insights from development. Development, 139, 3471–3486. doi: 10.1242/dev.071209.

Kruithof, B. P., Duim, S. N., Moerkamp, A. T., & Goumans, M. J. (2012) TGF-β and BMP signaling in cardiac cushion formation: Lessons from mice and chicken. Differentiation, 84, 89–102. doi:10.1016/j.diff.2012.04.003.

Lin, C. J., Lin, C. Y., Chen, C. H., Zhou, B., & Chang, C.P. (2012) Partitioning the heart: Mechanisms of cardiac septation and valve development. Development, 139, 3277–3299. doi: 10.1242/dev.063495.

Srivastava, D. (2006) Making or breaking the heart: From lineage determination to morphogenesis. Cell, 126, 1037–1048. doi:10.1016/j.cell.2006.09.003.

Serfling, E., Avots, A., Klein-Hessling, S., Rudolf, R., Vaeth, M., & Berberich-Siebelt, F. (2012) NFATc1/αA: The other Face of NFAT Factors in Lymphocytes. Cell Communication and Signaling, 10, 16. doi: 10.1186/1478-811X-10-16.

Kiani, A., Habermann, I., Haase, M., Feldmann, S., Boxberger, S., Sanchez-Fernandez, M., et al. (2004) Expression and regulation of NFAT (nuclear factors of activated T cells) in human CD34 cells: down-regulation upon myeloid differentiation. Journal of Leukocyte Biology, 76(5), 1057–1065.

Macian, F. (2005) Nfat proteins: key regulators of Т-cell development and function. Nature reviews. Immunology, 5, 472–484.

Shen, L., Li, Z. Z., Shen, A. D., Liu, H., Bai, S., Guo, J., et al. (2013) Association of NFATc1 gene polymorphism with ventricular septal defect in the Chinese Han population. Chin Med J (Engl), 126(1), 78–81.

Zhi, B. Z. (2010) Association between nuclear factor of activated T cells 1 gene mutation and simple congenital heart disease in children. Chin Med. J, 38(7), 621–624.

Zhao, W., Niu, G., Shen, B., Zheng, Y., Gong, F., Wang, X., et al. (2013) High-resolution analysis of copy number variants in adults with simple-to-moderate congenital heart disease. Am J Med. Genet A, 161A(12), 3087–3094. doi: 10.1002/ajmg.a.36177.

Lunde, I. G. (2011) Molecular mechanisms of heart failure: Nuclear Factor of Activated T-cell (NFAT)signaling in myocardial hypertrophy and dysfunction: dissertation for the degree of Philosophiae Doctor (PhD). Series of dissertations submitted to the Faculty of Medicine, University of Oslo, 1307.

Kehat, I., & Molkentin, J. D. (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122, 2727–2735. doi: 10.1161/CIRCULATIONAHA.110.942268.

Stansfield, W. E., Charles, P. C., Tang, R. H., Rojas, M., Bhati, R., Moss, N. C., et al. (2009) Regression of pressure-induced left ventricular hypertrophy is characterized by a distinct gene expression profile. J Thorac Cardiovasc. Surg., 137, 232–238. doi: 10.1016/j.jtcvs.2008.08.019.

Takahashi, R., Negishi, K., Watanabe, A., Arai, M., Naganuma, F., Ohyama, Y., & Kurabayash, M. (2011) Serumsyndecan-4 is a novel biomarker for patients with chronic heart failure. J Cardiol, 57, 325–332. doi: 10.1016/j.jjcc.2011.01.012.

Voelkl, J., Alesutan, I., Pakladok, T., Viereck, R., Feger, M., Mia, S., et al. (2014) Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling. J. Biochem Biophys Res Commun, 445(1), 244–249. doi: 10.1016/j.bbrc.2014.01.186.

Poirier, O., Nicaud, V., McDonagh, T., Dargie, H. J., Desnos, M., Dorent, R., et al. (2003) Polymorphisms of genes of the cardiac calcineurin pathway and cardiac hypertrophy. FEur J Hum Genet, 11(9), 659–664.

Bingruo, W., Baldwin, H.S., & Zhou, B. (2013) Nfatc1 directs the endocardial progenitor cells to make heart valve primordium. Trends in Cardiovascular Medicine, 23, 294–300. doi: 10.1016/j.tcm.2013.04.003.

Linde, E. V., Ahmetov, I. I., Orjonikidze, Z. Y., Asratenkova, I. V., & Fedotova, A. G. (2009) Kliniko-genealogicheckie aspekty formirovanya «patologicheskogo sportivnogo serdtsa» u vysoko-kvalifitsirovannykh sportsmenov [Clinical and genetic aspects for «pathologic sport heart» pathogenesis in elite athletes]. Vestnik sportivnoj nauki, 2, 32–37. [in Russian].

Linde, E. V., Ahmetov, I. I., Orjonikidze, Z. Y., Asratenkova, I. V., & Fedotova, A. G. (2009) Vliyanie polimorfizmof genov АСЕ, РРАRA, PPARD i NFATC4 na kliniko-funktsionalnye kharakteristiki «sportivnogo serdtsa» [Influence of polymorphisms of ACE RRARA, PPARD and NFATC4 on clinical and functional characteristics of the «athlete's heart»]. Mezhdunarodnyj zhurnal interventsionnoj kardioangiologii, 17, 50–56. [in Russian].

Frutos, S., Caldwell, E., Nitta, C. H., Kanagy, N. L., Wang, J ., Wang, W., et al. (2010) NFATc3 contributes to intermittent hypoxia-induced arterial remodeling in mice. Am J Physiol Heart Circ. Physiol, 299(2), 356–363. doi: 10.1152/ajpheart.00341.2010.

Frutos, S., Duling, L., Alò, D., Berry, T., Jackson-Weaver, O., Walker, M., et al. (2008) NFATc3 is required for intermittent hypoxia-induced hypertension. Am J Physiol Heart Circ. Physiol, 294(5), 2382–2390. doi: 10.1152/ajpheart.00132.2008.

Polovkova, O. G. (2013) Rol` genov signal`nogo puti kalcineurina v razvitii remodelirovaniya miokarda u bolnykh ishemichesko’j bolezn`u serdtsa (Avtoref. dis…kand. med. nauk). [Role of calcineurin signaling pathway genes in the development of myocardial remodeling in patients with coronary heart disease] (Extended abstract of candidate’s thesis). Tomsk [in Russian].

How to Cite

1.
Kamenshchyk АV, Ivanko OG, Fеdchеnkо AV. Nuclear factor of activated T-cells (NFATC) as a possible diagnostic and prognostic marker in congenital valvular diseases and myocardial hypertrophy. Pathologia [Internet]. 2015May19 [cited 2024Mar.29];(1). Available from: http://pat.zsmu.edu.ua/article/view/42815

Issue

Section

Review