Content of micro- and macroelements in patients with autoimmune thyroiditis and subclinical hypothyroidism

Authors

DOI:

https://doi.org/10.14739/2310-1237.2025.2.331228

Keywords:

autoimmune thyroiditis, subclinical hypothyroidism, microelements, macroelements, ioduria, Se, Mg, Ca, vitamin D

Abstract

Aim. To investigate the content of iodine (I), selenium (Se), zinc (Zn), magnesium (Mg), calcium (Ca) and vitamin D, the thyroid volume and thyroid functional state in patients with autoimmune thyroiditis (AIT) and subclinical hypothyroidism (SCH), to assess the elemental supply, possibilities and feasibility of preventive and therapeutic use of micro- and macronutrients in the early stages of the disease.

Materials and methods. 134 people were examined (13 men, 121 women). Within the entire sample, 2 groups were formed depending on the presence of functional and laboratory signs of the disease: 1st – control group consisted of 53 healthy individuals without endocrine pathology, average age – 37.9 ± 11.8 years, of which 8 were men (15.10 %), and 2nd group with AIT and SCH – 81 people, average age – 40.0 ± 11.1 years, of which 5 were men (6.17 %). Anthropometric parameters were determined: age, sex, height, weight, body mass index; thyroid functional state: total thyroid volume, concentration of thyroid-stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), level of antibodies to thyroid peroxidase (TPOAb), level of antibodies to thyroglobulin (TgAb); level of micro- and macroelement: I in urine, Se, Mg, Ca, vitamin D in serum.

Results. In the group with AIT and SCH, a significant (p < 0.001) increase in thyroid volume, TSH, TPOAb and TgAb levels and a significant decrease in thyroid hormones fT4 (p = 0.008), fT3 (p < 0.001) were found compared to the control group. In both groups, a slight iodine deficiency in the urine and a deficiency of vitamin D in the serum compared to reference values were noted. In the group of patients with AIT and SCH, a significant decrease in Se (p = 0.016), Mg (p < 0.001) and total Ca (p < 0.001) was found compared to the control. A pronounced positive correlation of Se / I (r = 0.691) was found. The statistically significant Odds ratio of AIT progression and overt hypothyroidism with reduced Mg content is OR = 2.80 (95 % CI 1.29–6.09, p = 0.0094), with reduced Ca content – OR = 7.68 (95 % CI 2.77–21.30, p = 0.0001).

Conclusions. The group with AIT and SCH and the control group have a weak iodine deficiency in the urine and vitamin D deficiency in the blood serum compared to normal reference values, which indicates a general population deficiency. In the group of patients with AIT and SCH, a significant decrease in serum Se, Mg and total Ca was found compared to the control. A significant positive correlation Se / I (r = 0.691) indicates the relationship of these trace elements and confirms their combined effect on the development of autoimmune disorders and thyroid hormonal changes. A high risk of progression of AIT and overt hypothyroidism exists with reduced Mg and Ca content.

Author Biographies

V. I. Kravchenko, V. P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine, Kyiv

MD, PhD, DSc, Professor, Head of Department of Epidemiology of Endocrine Diseases

T. F. Zakharchenko, V. P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine, Kyiv

PhD, Senior Research Fellow, Senior Researcher of Department of Epidemiology of Endocrine Diseases

O. V. Rakov, V. P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine, Kyiv

MD, Doctor-endocrinologist of the Consultative Polyclinic Department

K. Yu. Ivaskiva, V. P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine, Kyiv

MD, PhD, Senior Researcher of the Scientific Advisory Department of Outpatient Preventive Care for Patients with Endocrine Pathology

O. I. Kovzun, V. P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine, Kyiv

PhD, DSc, Professor, Deputy Director for Scientific Affairs; Corresponding Member of the NAMS of Ukraine

References

Rodríguez Y, Rojas M, Monsalve DM, Acosta-Ampudia Y, Pacheco Y, Rodríguez-Jiménez M, Ramírez-Santana C, Anaya JM. Latent autoimmune thyroid disease. J Transl Autoimmun. 2020;3:100038. doi: https://doi.org/10.1016/j.jtauto.2020.100038

Yoo WS, Chung HK. Subclinical Hypothyroidism: Prevalence, Health Impact, and Treatment Landscape. Endocrinol Metab (Seoul). 2021;36(3):500-13. doi: https://doi.org/10.3803/EnM.2021.1066

Kravchenko VI, Тоvkay ОA, Rakov ОV, Тronko МD. [Epidemiology of autoimmune thyroiditis]. International Journal of Endocrinology (Ukraine). 2021;17(2):136­44. Ukrainian. doi: https://doi.org/10.22141/2224­0721.17.2.2021.230568

Shukla SK, Singh G, Ahmad S, Pant P. Infections, genetic and environmental factors in pathogenesis of autoimmune thyroid diseases. Microb Pathog. 2018;116:279-88. doi: https://doi.org/10.1016/j.micpath.2018.01.004

da Silva GB, Yamauchi MA, Bagatini MD. Oxidative stress in Hashimoto's thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Mol Cell Biochem. 2023;478(4):949-66. doi: https://doi.org/10.1007/s11010-022-04564-4

Valea A, Georgescu CE. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens). 2018;17(2):183-96. doi: https://doi.org/10.1007/s42000-018-0033-5

Kravchenko V, Zakharchenko T. Thyroid hormones and minerals in immunocorrection of disorders in autoimmune thyroid diseases. Front Endocrinol (Lausanne). 2023;14:1225494. doi: https://doi.org/10.3389/fendo.2023.1225494

Bryliński Ł, Kostelecka K, Woliński F, Komar O, Miłosz A, Michalczyk J, et al. Effects of Trace Elements on Endocrine Function and Pathogenesis of Thyroid Diseases-A Literature Review. Nutrients. 2025;17(3):398. doi: https://doi.org/10.3390/nu17030398

Zimmermann MB, Andersson M. Global endocrinology: Global perspectives in endocrinology: coverage of iodized salt programs and iodine status in 2020. Eur J Endocrinol. 2021;185(1):R13-R21. doi: https://doi.org/10.1530/EJE-21-0171

Lisco G, De Tullio A, Triggiani D, Zupo R, Giagulli VA, De Pergola G, et al. Iodine Deficiency and Iodine Prophylaxis: An Overview and Update. Nutrients. 2023;15(4):1004. doi: https://doi.org/10.3390/nu15041004

Köhrle J. Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int J Mol Sci. 2023;24(4):3393. doi: https://doi.org/10.3390/ijms24043393

Li X, Xing M, Tu P, Wu L, Niu H, Xu M, et al. Urinary iodine levels and thyroid disorder prevalence in the adult population of China: a large-scale population-based cross-sectional study. Sci Rep. 2025;15(1):14273. doi: https://doi.org/10.1038/s41598-025-97734-5

Teti C, Panciroli M, Nazzari E, Pesce G, Mariotti S, Olivieri A, et al. Iodoprophylaxis and thyroid autoimmunity: an update. Immunol Res. 2021;69(2):129-38. doi: 10.1007/s12026-021-09192-6

Duntas LH. The catalytic role of iodine excess in loss of homeostasis in autoimmune thyroiditis. Curr Opin Endocrinol Diabetes Obes. 2018;25(5):347-52. doi: https://doi.org/10.1097/MED.0000000000000425

Wu Q, Rayman MP, Lv H, Schomburg L, Cui B, Gao C, et al. Low Population Selenium Status Is Associated With Increased Prevalence of Thyroid Disease. J Clin Endocrinol Metab. 2015;100(11):4037-47. doi: https://doi.org/10.1210/jc.2015-2222

Szeliga A, Czyżyk A, Niedzielski P, Mleczek M, Maciejewski A, Dorszewska J, et al. Assessment of serum selenium concentration in patients with autoimmune thyroiditis in Poznan district. Pol Merkur Lekarski. 2018;45(268):150-3.

Severo JS, Morais JB, de Freitas TE, Andrade AL, Feitosa MM, Fontenelle LC, et al. The Role of Zinc in Thyroid Hormones Metabolism. Int J Vitam Nutr Res. 2019;89(1-2):80-8. doi: https://doi.org/10.1024/0300-9831/a000262

Beserra JB, Morais JB, Severo JS, Cruz KJ, de Oliveira AR, Henriques GS, et al. Relation Between Zinc and Thyroid Hormones in Humans: a Systematic Review. Biol Trace Elem Res. 2021;199(11):4092-100. doi: https://doi.org/10.1007/s12011-020-02562-5. Erratum in: Biol Trace Elem Res. 2021;199(12):4876. doi: https://doi.org/10.1007/s12011-021-02597-2

Prasad AS, Bao B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants (Basel). 2019;8(6):164. doi: https://doi.org/10.3390/antiox8060164

Trebak M, Kinet JP. Calcium signalling in T cells. Nat Rev Immunol. 2019;19(3):154-69. doi: https://doi.org/10.1038/s41577-018-0110-7

Saini N, Lakshminarayanan S, Kundu P, Sarin A. Notch1 Modulation of Cellular Calcium Regulates Mitochondrial Metabolism and Anti-Apoptotic Activity in T-Regulatory Cells. Front Immunol. 2022;13:832159. doi: https://doi.org/10.3389/fimmu.2022.832159

Ke Z, Liang D, Zeng Q, Ren Q, Ma H, Gui L, et al. hsBAFF promotes proliferation and survival in cultured B lymphocytes via calcium signaling activation of mTOR pathway. Cytokine. 2013;62(2):310-21. doi: https://doi.org/10.1016/j.cyto.2013.03.011

Arancibia-Hernández YL, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J. Antioxidant/anti-inflammatory effect of Mg2+ in coronavirus disease 2019 (COVID-19). Rev Med Virol. 2022;32(5):e2348. doi: https://doi.org/10.1002/rmv.2348

Wimalawansa SJ. Physiology of Vitamin D-Focusing on Disease Prevention. Nutrients. 2024;16(11):1666. doi: https://doi.org/10.3390/nu16111666

Gallo D, Mortara L, Gariboldi MB, Cattaneo SA, Rosetti S, Gentile L, et al. Immunomodulatory effect of vitamin D and its potential role in the prevention and treatment of thyroid autoimmunity: a narrative review. J Endocrinol Invest. 2020;43(4):413-29. doi: https://doi.org/10.1007/s40618-019-01123-5

Klubo-Gwiezdzinska J, Wartofsky L. Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Pol Arch Intern Med. 2022;132(3):16222. doi: https://doi.org/10.20452/pamw.16222

Biondi B, Cappola AR, Cooper DS. Subclinical Hypothyroidism: A Review. JAMA. 2019 9;322(2):153-60. doi: https://doi.org/10.1001/jama.2019.9052

Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine. 2022;78(2):219-40. doi: https://doi.org/10.1007/s12020-022-03107-7

Ruggeri RM, Trimarchi F. Iodine nutrition optimization: are there risks for thyroid autoimmunity? J Endocrinol Invest. 2021;44(9):1827-35. doi: https://doi.org/10.1007/s40618-021-01548-x

Gheorghiu ML, Badiu C. Selenium involvement in mitochondrial function in thyroid disorders. Hormones (Athens). 2020;19(1):25-30. doi: https://doi.org/10.1007/s42000-020-00173-2

Filipowicz D, Majewska K, Kalantarova A, Szczepanek-Parulska E, Ruchała M. The rationale for selenium supplementation in patients with autoimmune thyroiditis, according to the current state of knowledge. Endokrynol Pol. 2021;72(2):153-62. doi: https://doi.org/10.5603/EP.a2021.0017

Nagano K, Motomura Y, Bando H, Yamamoto M, Kanie K, Yoshino K, et al. Thyroid dysfunction due to trace element deficiency-not only selenium but also zinc. Hormones (Athens). 2024;23(4):675-81. doi: https://doi.org/10.1007/s42000-024-00550-1

Luo Y, Zeng H, Ye Y, Yu G, Song C, Liu S, et al. Associations of metal profiles in blood with thyroiditis: a cross-sectional study. Environ Sci Pollut Res Int. 2023;30(8):21072-80. doi: https://doi.org/10.1007/s11356-022-23625-1

Jat RK, Panwar AK, Agarwal P, Sharma C, Bansal DP, Pareek A, et al. Assessment of Serum Minerals in Subclinical Hypothyroid and Overt Hypothyroid Patients. Cureus. 2021;13(8):e16944. doi: https://doi.org/10.7759/cureus.16944

Khan R, Prabha T, Kumar S. Study of calcium, magnesium and phosphorus levels among hypothyroid patients in Trichy, Tamil Nadu. J Evid Based Med Healthc. 2021;8(30):2797-803.

Wang K, Wei H, Zhang W, Li Z, Ding L, Yu T, et al. Severely low serum magnesium is associated with increased risks of positive anti-thyroglobulin antibody and hypothyroidism: A cross-sectional study. Sci Rep. 2018;8(1):9904. doi: https://doi.org/10.1038/s41598-018-28362-5

Yasmeh J, Farpour F, Rizzo V, Kheradnam S, Sachmechi I. Hashimoto thyroiditis not associated with vitamin D deficiency. Endocr Pract. 2016;22(7):809-13. doi: https://doi.org/10.4158/EP15934.OR

Krysiak R, Kowalcze K, Okopień B. Selenomethionine potentiates the impact of vitamin D on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis and low vitamin D status. Pharmacol Rep. 2019;71(2):367-73. doi: https://doi.org/10.1016/j.pharep.2018.12.006

Gao XR, Yu YG. Meta-Analysis of the Association between Vitamin D Receptor Polymorphisms and the Risk of Autoimmune Thyroid Disease. Int J Endocrinol. 2018;2018:2846943. doi: https://doi.org/10.1155/2018/2846943

Chao G, Zhu Y, Fang L. Correlation Between Hashimoto's Thyroiditis-Related Thyroid Hormone Levels and 25-Hydroxyvitamin D. Front Endocrinol (Lausanne). 2020;11:4. doi: https://doi.org/10.3389/fendo.2020.00004

Downloads

Additional Files

Published

2025-08-30

How to Cite

1.
Kravchenko VI, Zakharchenko TF, Rakov OV, Ivaskiva KY, Kovzun OI. Content of micro- and macroelements in patients with autoimmune thyroiditis and subclinical hypothyroidism. Pathologia [Internet]. 2025Aug.30 [cited 2025Oct.2];22(2):127-33. Available from: https://pat.zsmu.edu.ua/article/view/331228

Issue

Section

Original research