Determination of the structural composition of biopsies from the maxillary sinus augmentation zone using the NanoGraft material

Authors

DOI:

https://doi.org/10.14739/2310-1237.2025.2.333002

Keywords:

sinus lift, NanoGraft, biopsy, osteogenesis, histology, bone regeneration, biocompatibility

Abstract

Aim. This study aimed to evaluate the structural composition of biopsy samples from the augmented maxillary sinus region using the NanoGraft biomaterial.

Materials and methods. Biopsy specimens from sinus lift procedures involving NanoGraft were histologically examined. Samples were fixed in 10 % neutral buffered formalin for 48–72 hours, decalcified using a rapid decalcifier (Kaltek, Italy), and processed in paraffin using an automated tissue processor (Milestone LOGOS, Milestone, Italy). Paraffin blocks were prepared with the HistoStar embedding workstation (Thermo Fisher Scientific, USA), and 4 µm serial sections were obtained using the Thermo Scientific HM 340E rotary microtome. Sections were stained with hematoxylin and eosin (Dako CoverStainer, Agilent, USA), and toluidine blue staining was performed manually. Morphological analysis was carried out using a Leica light microscope to assess bone structure, surrounding connective tissue, resorption dynamics, and new bone formation.

Results. All samples revealed newly formed trabecular bone, active osteogenesis, and progressive remodeling, with replacement of coarse fibrous bone by lamellar bone containing osteons. No significant inflammatory response to the biomaterial was observed.

Conclusions. NanoGraft exhibited high biocompatibility, along with osteoinductive and biostimulatory properties, making it a promising material for maxillary sinus augmentation procedures.

Author Biographies

O. S. Kosinov, Zaporizhzhia State Medical and Pharmaceutical University

MD, PhD-student of the Department of Dentistry of Postgraduate Education

O. M. Mishchenko, Zaporizhzhia State Medical and Pharmaceutical University

MD, PhD, DSc, Professor, Head of the Department of Dentistry of Postgraduate Education

References

Sanz M, Vignoletti F. Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dent Mater. 2015;31(6):640-7. doi: https://doi.org/10.1016/j.dental.2015.03.005

Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 2017;3(1):23. doi: https://doi.org/10.1186/s40729-017-0084-4

Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, et al. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-18. doi: https://doi.org/10.1016/j.jcms.2012.01.002

Baj A, Trapella G, Lauritano D, Candotto V, Mancini GE, Giannì AB. An overview on bone reconstruction of atrophic maxilla: success parameters and critical issues. J Biol Regul Homeost Agents. 2016;30(2 Suppl 1):209-215.

Solakoglu Ö, Götz W, Heydecke G, Schwarzenbach H. Histological and immunohistochemical comparison of two different allogeneic bone grafting materials for alveolar ridge reconstruction: A prospective randomized trial in humans. Clin Implant Dent Relat Res. 2019;21(5):1002-16. doi: https://doi.org/10.1111/cid.12824

Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269-81. doi: https://doi.org/10.1016/j.ijbiomac.2014.07.008

Fretwurst T, Gad LM, Steinberg T, Schmal H, Zeiser R, Amler AK, et al. Detection of major histocompatibility complex molecules in processed allogeneic bone blocks for use in alveolar ridge reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018:S2212-4403(18)30054-3. doi: https://doi.org/10.1016/j.oooo.2018.01.018

Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance. Front Immunol. 2019;10:93. doi: https://doi.org/10.3389/fimmu.2019.00093

Zhang Y, Louboutin JP, Zhu J, Rivera AJ, Emerson SG. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J Clin Invest. 2002;109(10):1335-44. doi: https://doi.org/10.1172/JCI14989

Corbella S, Taschieri S, Weinstein R, Del Fabbro M. Histomorphometric outcomes after lateral sinus floor elevation procedure: a systematic review of the literature and meta-analysis. Clin Oral Implants Res. 2016;27(9):1106-22. doi: https://doi.org/10.1111/clr.12702

Danesh-Sani SA, Engebretson SP, Janal MN. Histomorphometric results of different grafting materials and effect of healing time on bone maturation after sinus floor augmentation: a systematic review and meta-analysis. J Periodontal Res. 2017;52(3):301-12. doi: https://doi.org/10.1111/jre.12402

Lorenz J, Kubesch A, Al-Maawi S, Schwarz F, Sader RA, Schlee M, et al. Allogeneic bone block for challenging augmentation-a clinical, histological, and histomorphometrical investigation of tissue reaction and new bone formation. Clin Oral Investig. 2018;22(9):3159-69. doi: https://doi.org/10.1007/s00784-018-2407-0

Stevanovic M, Selakovic D, Vasovic M, Ljujic B, Zivanovic S, Papic M, et al. Comparison of Hydroxyapatite/Poly(lactide-co-glycolide) and Hydroxyapatite/Polyethyleneimine Composite Scaffolds in Bone Regeneration of Swine Mandibular Critical Size Defects: In Vivo Study. Molecules. 2022;27(5):1694. doi: https://doi.org/10.3390/molecules27051694

Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors. 2020;46(3):326-40. doi: https://doi.org/10.1002/biof.1598

Bakkalci D, Micalet A, Al Hosni R, Moeendarbary E, Cheema U. Associated changes in stiffness of collagen scaffolds during osteoblast mineralisation and bone formation. BMC Res Notes. 2022;15(1):310. doi: https://doi.org/10.1186/s13104-022-06203-z

Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, et al. Osteoblast Differentiation and Bone Matrix Formation in Vivo and in Vitro. Tissue Eng Part B Rev. 2017;23(3):268-80. doi: https://doi.org/10.1089/ten.TEB.2016.0454

Additional Files

Published

2025-08-30

How to Cite

1.
Kosinov OS, Mishchenko OM. Determination of the structural composition of biopsies from the maxillary sinus augmentation zone using the NanoGraft material. Pathologia [Internet]. 2025Aug.30 [cited 2025Oct.2];22(2):141-7. Available from: https://pat.zsmu.edu.ua/article/view/333002

Issue

Section

Original research