The prognostication of development of respiratory tract bacterial diseases for children of early age

Authors

  • H. O. Lezhenko Zaporizhzhia State Medical University, Ukraine,
  • A. V. Abramov Zaporizhzhia State Medical University, Ukraine,
  • H. V. Krainia Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1237.2019.2.177169

Keywords:

inflammatory diseases of the bronchopulmonary system, pneumonia, statistical factor analysis, infants, logistic models

Abstract

 

The purpose of this study was definition of influence of the modified factors in development of acute pneumonia in children of early age and development of the method of prognostication of disease development.

Materials and methods. 89 children of early age with acute bronchopulmonary pathology whose average age was 1.3 ± 0.2 years (47 children with acute bacterial bronchitis and 42 children with acute community-acquired pneumonia) were examined. Also we tested the level of 25-hydroxyvitamin D (25(OH)D), hBPI, cathelicidin LL-37, lactoferrin in blood serum with the help of immunoenzymometric analysis. The significant factors that are most associated with the development of acute pneumonia were revealed using factor analysis. For prognostication of probability of development of an acute pneumonia the equation of logistic regression was used. Determination of quality of the received model of  prognostication was conducted by means of the ROC analysis and index of AUC. For assessment of the discriminating ability of model the Gini index was calculated.

Results. By results of  conducted factor analysis 5 significant factors determining the main part of predictors of development of an acute pneumonia in children of early age, patients with acute inflammatory bronchopulmonary pathology were allocated. The conducted correlation analysis of variables revealed existence of interrelations between prenatal, anamnestic and immune factors which entered further mathematical model of probability of development of an acute pneumonia in children of early age. The statistical importance of the created model was confirmed by Omnibus Test, the diagnostic information content was estimated according to a ROC curve that confirmed high quality of model.

Conclusion. On the basis of the conducted factor analysis the most priority predictors of development of an acute pneumonia in children of early age with acute bronchopulmonary pathology who were further included to the mathematical prognostic model of probability of development of the specified disease were allocated.

 

References

Mamani, M., Muceli, N., Ghasemi Basir, H. R., Vasheghani, M., & Poorolajal, J. (2017). Association between serum concentration of 25-hydroxyvitamin D and community-acquired pneumonia: a case-control study. International journal of general medicine., 10, 423–429. doi: 10.2147/IJGM.S149049

Wingerter, S. L., Bachur, R. G., Monuteaux, M. C., & Neuman, M. I. (2012). Application of the world health organization criteria to predict radiographic pneumonia in a US-based pediatric emergency department. The Pediatric infectious disease journal., 31(6), 561–564. doi: 10.1097/INF.0b013e31824da716

El-Sayed, W. A., & Aamer, E. R. (2017). Serum 25 oh vitamin d in children with bacterial pneumonia. Zagazig University Medical Journal., 21(1), 1–8. doi: 10.21608/ZUMJ.2015.4466

Le Saux, N., & Robinson, J. L. (2011). CPS Infectious Diseases and Immunization Committee. Pneumonia in healthy Canadian children and youth: Practice points for management. Paediatr Child Health, 16(7), 417–20.

Van deer Meer, V., Neven, A. K., van den Broek, P. J., & Assendelft, W. J. (2005). Diagnostic value of C-reactive protein in infections of the lower respiratory tract: systematic review. BMJ., 331(7507), 26.

Wayse, V., Yousafzai, A., Mogale, K., & Filteau, S. (2004). Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr., 58(4), 563–567. doi: 10.1038/sj.ejcn.1601845

Nakaz Ministerstva okhorony zdorovya Ukrainy «Protokol likuvannia ditei z hostrymy bronhitamy» 31 hrudnia 2005 roku №18 [Law of Ukraine Protocol for the treatment of children with acute bronchitis from December 31, 2005, №18]. Retrieved from: zakon.rada.gov.ua [in Ukrainian].

Nakaz Ministerstva okhorony zdorovya Ukrainy «Protokol likuvannia ditei z hostrymy bronhitamy» 31 hrudnia 2005 roku №18 [Law of Ukraine Protocol for the treatment of children with acute bronchitis from December 31, 2005, №18]. Retrieved from: zakon.rada.gov.ua [in Ukrainian].

Mwachari, C., Nduba, V., Nguti, R., Park, D. R., Sanguli, L., & Cohen, C. R. (2007). Validation of a new clinical scoring system for acute bronchitis. Int J Tuberc Lung Dis., 11(11), 1253–9.

Yumiko, M., Kazuko, S., & Asako, N. (2015). Pediatric Respiratory Severity Score (PRESS) for Respiratory Tract Infections in Children. Austin Virol and Retrovirology., 2(1), 1009.

Tikhomirov, N. P., Tikhomirova, T. M., & Ushmaev, O. S. (2011). Metody e'konometriki i mnogomernogo statisticheskogo analiza [Methods of econometrics and multidimensional statistical analysis]. Moscow: Ekonomika [in Russian].

Lyakh, Yu. E., & Gur'yanov, V. G. (2012). Matematicheskoe modelirovanie pri reshenii zadach klassifikacii v biomedicine [Mathematical modeling in solving problems of classification in biomedicine]. Ukrainskyi zhurnal telemedytsyny ta medychnoi telematyky, 10(2), 69–76. [in Russian].

Petri, A., & Sebin, K. (2003). Naglyadnaya statistika v medicine [Visual statistics in medicine]. Moscow: GE'OTAR-Media, [in Russian].

Sorokin, A. S. (2014). K voprosu validacii modeli logisticheskoj regressii v kreditnom skoringe [On the question of validation logistic regression model in credit scoring]. Naukovedenie, 2(21), 81. [in Russian].

Meyz, E. (2008). Rukovodstvo po kreditnomu skoringu [Credit Scoring Guide]. Minsk: Grevtsov Pablisher. [in Russian].

Grigoryeva, E. V., & Efremova, O. K. (2010). Analiz kachestva vedeniya bol'nykh s vnebol'nichnoj pnevmoniej v usloviyakh terapevticheskogo otdeleniya gorodskoj bol'nicy [Analysis of the quality of keeping of patients with community-acquired pneumonia in conditions of therapeutic ward of municipal hospital]. Acta Biomedica Scientifica, 2(72), 129–131. [in Russian].

Bush, A., Carlsen, R. H., & Zach, M. S. (2002). Growing up with lung disease: the lung in transition to adult life. ERSM, 189–213.

Mazur, L. I., Kulagina, V. V., Cherkasova, S. V. (2010). Osobennosti diagnostiki i techeniya vnebol'nichnoj pnevmonii u detej [Features of diagnosis and course of community-acquired pneumonia in children]. Pediatriya. Zhurnal im. G.N. Speranskogo, 89(4), 154–160. [in Russian].

Jahani, S., Shakiba, A., & Jahani, L. (2015). The Antimicrobial Effect of Lactoferrin on Gram-Negative and Gram-Positive Bacteria. International Journal of Infection, 2(3), e27954. doi: 10.17795/iji27594

Kudryasheva, I. A., Galimzyanov, Kh. M., Polunina, O. S., & Shelepova, T. N. (2008). Immunokhimicheskoe testirovanie laktoferrina pri vnebol'nichnoj pnevmonii u pozhilykh bol'nykh [Immunochemical testing of lactoferrin in community-acquired pneumonia in elderly patients]. Fundamental'nye issledovaniya, 2, 34–35. [in Russian].

Rogan, M. P., Geraghty, P., Greene, C. M., O'Neill, S. J., Taggart, C. C., & McElvaney, N. G. (2006). Antimicrobial proteins and polypeptides in pulmonary innate defence. Respiratory research, 7(1), 29.

Singh, P. K., Tack, B. F., McCray, P. B. Jr., & Welsh, M. J. (2000). Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol, 279(5), L799–805.

Spence, R. K. (2007) Medical and economic impact of anemia in hospitalized patients. Am. J. Hlth Syst. Pharm., 64(16 Suppl 11), S3–10. doi: 10.2146/ajhp070244

Rashad, M. M., Fayed, S. M., & El-Hag, A. M. K. (2015). Iron-deficiency anemia as a risk factor for pneumonia in children. Benha Medical Journal, 32(2), 96–100.

Nagel, R. E., & Jaffe, E. R. (2001). Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. New York: Cambridge University Press, 1214–33.

Budnevsky, A. V., Esaulenko, I. E., Ovsyannikov Evgeniy, S., Labzhaniya, N. B., Voronina, E. V., & Chernov, A. V. (2016). Аnemicheskij sindrom u bol'nykh vnebol'nichnoj pnevmoniej [Аnemic syndrome in patients with communal non-patient pneumonia]. Klinicheskaya medicina, 94(1), 56–60. [in Russian].

Wu, X., Li, Z., Li, X., Tian, Y., Fan, Y., Yu, C., et al. (2017). Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug design, development and therapy, 11, 939–946. doi: 10.2147/DDDT.S107195

Feng, Q., Huang, Y., Chen, M., Li, G., & Chen, Y. (2015). Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. European Journal of Clinical Microbiology & Infectious Diseases, 34(1), 197–204. doi: 10.1007/s10096-014-2219-3

Huchon, G., Woodhead, M., Gialdroni-Grassi, G., et al. (2010). Guidelines for management of adult community- acquired lower respiratory tract infections. Eur. Resp. J.,11, 986–991.

Chalmers, J. D., McHugh, B. J., Docherty, C., Govan, J. R., & Hill, A. T. (2013). Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax, 68(1), 39–47. doi: 10.1136/thoraxjnl-2012-202125

Laaksi, I., Ruohola, J. P., Mattila, V., Auvinen, A., Ylikomi, T., & Pihlajamäki, H. (2010). Vitamin D supplementation for the prevention of acute respiratory tract infection: a randomized, double-blinded trial among young Finnish men. The Journal of infectious diseases, 202(5), 809–814. doi: 10.1086/654881

Lai, Y., & Gallo, R. L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol, 30(3), 131–41. doi: 10.1016/j.it.2008.12.003

Parker, D., & Prince, A. (2011). Innate immunity in the respiratory epithelium. American journal of respiratory cell and molecular biology, 45(2), 189–201. doi: 10.1165/rcmb.2011-0011RT

Sagel, S. D., Sontag, M. K., & Accurso, F. J. (2009). Relationship between antimicrobial proteins and airway inflammation and infection in cystic fibrosis. Pediatr Pulmonol, 44(4), 402–409. doi: 10.1002/ppul.21028

Sim, S. H., Liu, Y., Wang, D., Novem, V., Sivalingam, S. P., Thong, T. W., et al. (2009). Innate immune responses of pulmonary epithelial cells to Burkholderia pseudomallei infection. PLoS ONE, 4(10), e7308. doi: 10.1371/journal.pone.0007308

Chu, H. W., Gally, F., Thaikoottathil, J., Janssen-Heininger, Y. M., Wu, Q., Zhang, G., et al. (2010). SPLUNC1 regulation in airway epithelial cells: role of toll-like receptor 2 signaling. Respir Res, 11, 155. doi: 10.1186/1465-9921-11-155

Britto, C. J., & Cohn, L. (2015). Bactericidal/Permeability-Increasing Protein Fold–Containing Family Member A1 in Airway Host Protection and Respiratory Disease. American journal of respiratory cell and molecular biology, 2015, 52(5), 525–534. doi: 10.1165/rcmb.2014-0297RT

Canny, G., & Levy, O. (2008) Bactericidal/permeability-increasing protein (BPI) and BPI homologs at mucosal sites. Trends in immunology, 29(11), 541–547. doi: 10.1016/j.it.2008.07.012

Britto, C. J., Liu, Q., Curran, D. R., Patham, B., Dela Cruz, C. S., & Cohn, L. (2013). Short palate, lung, and nasal epithelial clone-1 is a tightly regulated airway sensor in innate and adaptive immunity. Am J Respir Cell Mol Biol, 48(6), 717–724. doi: 10.1165/rcmb.2012-0072OC

Liu, Y., Bartlett, J. A., Di, M. E., Bomberger, J. M., Chan, Y. R., Gakhar, L., et al. (2013). SPLUNC1/BPIFA1 contributes to pulmonary host defense against klebsiella pneumoniae respiratory infection. Am J Pathol, 182(5), 1519–1531. doi: 10.1016/j.ajpath.2013.01.050

Coussens, A, Timms, P. M., Boucher, B. J., Venton, T. R., Ashcroft, A. T., Skolimowska, K. H., et al. (2009). 1a,25-dihydroxy1,25(OH)2D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology, 127(4), 539–48. doi: 10.1111/j.1365-2567.2008.03024.x

Di Rosa, M., Malaguarnera, M., Nicoletti, F., & Malaguarnera, L. (2011). Vitamin D3: a helpful immuno‐modulator. Immunology, 134(2), 123–139. doi: 10.1111/j.1365-2567.2011.03482.x

Hancock, R. E. W., Haney, E. F., & Gill, E. E. (2016). The immunology of host defence peptides: beyond antimicrobial activity. Nature Reviews Immunology, 16(5), 321–335. doi: 10.1038/nri.2016.29

Wang, G. (2014). Human antimicrobial peptides and proteins. Pharmaceuticals, 7(5), 545–594. doi: 10.3390/ph7050545

Guaní-Guerra, E., Santos-Mendoza, T., Lugo-Reyes, S. O., & Terán, L. M. (2010). Antimicrobial peptides: general overview and clinical implications in human health and disease. Clinical Immunology, 135(1), 1–11. doi: 10.1016/j.clim.2009.12.004

Holzl, M. A., Hofer, J., Steinberger, P., Pfistershammer, K. & Zlabinger, G. J. (2008). Host antimicrobial proteins as endogenous immunomodulators. Immunol Lett, 119(1–2), 4–11. doi: 10.1016/j.imlet.2008.05.003

Auvynet, C., & Rosenstein, Y. (2009). Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity. The FEBS journal, 276(22), 6497–6508. doi: 10.1111/j.1742-4658.2009.07360.x

Lezhenko, G. O., Pashkova, O. E., & Kraynya, H. V. (2017). The place of endogenous antimicrobial peptides in the pathogenetic mechanisms of the development of community-acquired pneumonia caused by Streptococcus pneumoniae among infants. Childs health, 12(4), 459–464.

Lezhenko, G. O., Pashkova, O. E., & Krainia, G. V. (2017). Vmist antymikrobnykh peptydiv u ditei rannioho viku, khvorykh na hostryi bronkhit, zalezhno vid etiolohichnoho chynnyka [The content of antimicrobial peptides in young children with acute bronchitis, depending on the etiologic factor]. Zdorov'ye rebenka, 12(1), 6–12. [in Ukrainian].

Downloads

How to Cite

1.
Lezhenko HO, Abramov AV, Krainia HV. The prognostication of development of respiratory tract bacterial diseases for children of early age. Pathologia [Internet]. 2019Sep.2 [cited 2024Apr.25];(2). Available from: http://pat.zsmu.edu.ua/article/view/177169

Issue

Section

Original research