Immunohistochemical characteristics of the angiogenesis processes in brain tissue in diabetes mellitus type 2
DOI:
https://doi.org/10.14739/2310-1237.2020.1.203736Keywords:
diabetes mellitus, angiogenesis, VEGF, VEGFR-2, CD31, CD105Abstract
Aim – to study the features of VEGF, VEGFR-2 and CD31, CD105 immunohistochemical expression in the cerebral cortex in diabetes mellitus type 2.
Materials and methods. Pathomorphological and immunohistochemical studies of the brain tissue section material were performed in 3 groups of observations: group I – control without DM and cerebrovascular pathology, group II – died with dyscirculatory-ischemic encephalopathy (DIE), group III – died with DM type 2.
Results. Increased expression of VEGF and VEGFR-2 was found both in dyscirculatory-ischemic encephalopathy and in patients with diabetes mellitus type 2 (VEGF in the control group – 0.337 (0.232; 0.617) %, in the group with DIE – 0.713 (0.438); 1.304) %, in the group with diabetes mellitus type 2 – 1.003 (0.699; 1.631) %; VEGFR-2 in the group of control – 0.916 (0.550; 1.56) %, in the group with DIE – 1,238 (0.76; 1.61) %, in the group with DM type 2 – 1.15 (0.58; 1.784) %. There is direct correlation between the level of expression of CD105 and VEGFR-2: r = 0.31 for diabetes type 2. The distribution density of microvessels significantly increases in the group with DM type 2. Significant increase in expression of CD105 in the group with DM type 2 (0.434 (0.265; 0.741) %) was found, compared with the group of control (0.346 (0.263; 0.46) %). There are direct correlations between CD31 and CD105 expression in DIE (r = 0,41) and in the group with DM type 2 (r = 0,39, P < 0.05).
Conclusions. Angiogenesis is activated in the cerebral cortex in diabetes type 2, which may be due to the activation of the transcription factor HIF-1a.
References
Ergul, A., Abdelsaid, M., Fouda, A. Y., & Fagan, S. C. (2014). Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. Journal of Cerebral Blood Flow and Metabolism, 34(4), 553-563. https://doi.org/10.1038/jcbfm.2014.18
Li, W. G., Prakash, R., Kelly-Cobbs, A. I., Ogbi, S., Kozak, A., El-Remessy, A. B., Schreihofer, D. A., Fagan, S. C., & Ergul, A. (2010). Adaptive Cerebral Neovascularization in a Model of Type 2 Diabetes Relevance to Focal Cerebral Ischemia. Diabetes, 59(1), 228-235. https://doi.org/10.2337/db09-0902
Roslavtceva, V. V., Salmina, A. B., Prokopenko, S. V., Pozhilenkova, E. A., Kobanenko, I. V., & Rezvitskaya, G. G. (2016). Sosudistyi endotelial'nyi faktor rosta v regulyatsii razvitiya i funktsionirovaniya golovnogo mozga: novye molekuly-misheni dlya farmakoterapii [The role of vascular endothelial growth factor in the regulation of development and functioning of the brain: new target molecules for pharmacotherapy]. Biomeditsinskaya Khimiya, 62(2), 124-133. [in Russian]. https://doi.org/10.18097/PBMC20166202124
Rud’ko, A. S., Efendieva, M. Kh., Budzinskaya, M. V., & Karpilova, M. A. (2017). Vlijanie faktora rosta jendotelija sosudov na angiogenez i nejrogenez [Influence of vascular endothelial growth factor on angiogenesis and neurogenesis]. Vestnik oftal'mologii, (3), 75-80. [in Russian]. https://doi.org/10.17116/oftalma2017133375-80
Harde, E., Nicholson, L., Cuadrado, B. F., Bissen, D., Wigge, S., Urban, S., Segarra, M., de Almodovar, C. R., & Acker-Palmer, A. (2019). EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. Elife, 8, Article e49819. https://doi.org/10.7554/eLife.49819
Theis, V., & Theiss, C. (2018). VEGF - A Stimulus for Neuronal Development and Regeneration in the CNS and PNS. Current Protein & Peptide Science, 19(6), 589-597. https://doi.org/10.2174/1389203719666180104113937
Geiseler, S. J., & Morland, C. (2018). The Janus Face of VEGF in Stroke. International Journal of Molecular Sciences, 19(5), Article 1362. https://doi.org/10.3390/ijms19051362
Harris, R., Miners, J. S., Allen, S., & Love, S. (2018). VEGFR1 and VEGFR2 in Alzheimer's Disease. Journal of Alzheimers Disease, 61(2), 741-752. https://doi.org/10.3233/jad-170745
Fukumitsu, R., Takagi, Y., Yoshida, K., & Miyamoto, S. (2013). Endoglin (CD105) is a more appropriate marker than CD31 for detecting microvessels in carotid artery plaques. Surgical Neurology International, 4(1), 132. https://doi.org/10.4103/2152-7806.119081
Prasol, V. A., Myasoedov, K. V., & Gilyov, B. V. (2015). Prognosticheskie markery techeniya kriticheskoi ishemii nizhnikh konechnostei [Prognostic markers of the course of critical lower limb ischemia]. Kharkivska khirurhichna shkola, (6), 14-22. [in Russian].
Zhu, W., Ma, L., Zhang, R., & Su, H. (2017). The roles of endoglin gene in cerebrovascular diseases. Neuroimmunology and Neuroinflammation, 4(10), 199-210. https://doi.org/10.20517/2347-8659.2017.18
Kopczyńska, E., & Makarewicz, R. (2012). Endoglin - A marker of vascular endothelial cell proliferation in cancer. Wspolczesna Onkologia, 16(1), 68-71. https://doi.org/10.5114/wo.2012.27340
Bosari, S., Lee, A. K. C., DeLellis, R. A., Wiley, B. D., Heatley, G. J., & Silverman, M. L. (1992). Microvessel quantitation and prognosis in invasive breast carcinoma. Human Pathology, 23(7), 755-761. https://doi.org/10.1016/0046-8177(92)90344-3
Ebersole, J. L., Novak, M. J., Orraca, L., Martinez-Gonzalez, J., Kirakodu, S., Chen, K. C., Stromberg, A., & Gonzalez, O. A. (2018). Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology, 154(3), 452-464. https://doi.org/10.1111/imm.12894
Yang, G. L., & Li, L. Y. (2018). Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15. Signal Transduction and Targeted Therapy, 3, Article Unsp 21. https://doi.org/10.1038/s41392-018-0023-8
Abhinand, C. S., Raju, R., Soumya, S. J., Arya, P. S., & Sudhakaran, P. R. (2016). VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. Journal of Cell Communication and Signaling, 10(4), 347-354. https://doi.org/10.1007/s12079-016-0352-8
Prakash, R., Somanath, P. R., El-Remessy, A. B., Kelly-Cobbs, A., Stern, J. E., Dore-Duffy, P., Johnson, M., Fagan, S. C., & Ergul, A. (2012). Enhanced cerebral but not peripheral angiogenesis in the Goto-Kakizaki model of type 2 diabetes involves VEGF and peroxynitrite signaling. Diabetes, 61(6), 1533-1542. https://doi.org/10.2337/db11-1528
Rossi, E., Bernabeu, C., & Smadja, D. M. (2019). Endoglin as an Adhesion Molecule in Mature and Progenitor Endothelial Cells: A Function Beyond TGF-beta. Frontiers in Medicine, 6, Article 10. https://doi.org/10.3389/fmed.2019.00010
Tian, H. Y., Huang, J. J., Golzio, C., Gao, X., Hector-Greene, M., Katsanis, N., & Blobe, G. C. (2018). Endoglin interacts with VEGFR2 to promote angiogenesis. Faseb Journal, 32(6), 2934-2949. https://doi.org/10.1096/fj.201700867RR
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (SeeThe Effect of Open Access).