DOI: https://doi.org/10.14739/2310-1237.2020.1.203844

Патофізіологічне обґрунтування ефективності застосування кверцетину в терапії коронавірусної хвороби (COVID-19)

I. A. Zupanets, S. K. Shebeko, N. P. Bezugla, I. A. Otrishko

Анотація


 

Зважаючи на відсутність ефективної та безпечної терапії хворих на COVID-19, пошук нових методів лікування – найбільш актуальна тема в медицині та фармації. Висока летальність (7,1 %) внаслідок розвитку гострого респіраторного дистрес-синдрому, який зумовлений цитокіновим штормом, диктують необхідність розробки нових підходів до впливу на різноманітні патогенетичні ланки захворювання в комплексній терапії таких хворих.

В огляді узагальнили результати експериментальних і клінічних досліджень щодо вивчення фармакологічних властивостей кверцетину (механізмів дії, фармакологічних ефектів) і лікарських препаратів, що його містять, – Квертину та Корвітину (пероральна та парентеральна лікарські форми), які наявні на фармацевтичному ринку України.

Результати численних досліджень свідчать, що кверцетин має (серед інших) високу протизапальну активність, противірусну, мембраностабілізувальну, імуномодулювальну й антиоксидантну дії. Механізми реалізації цих фармакологічних ефектів добре вивчені та зумовлюють можливість застосування кверцетину як патогенетичної терапії (вплив на різні ланки патогенезу) у хворих на коронавірусну інфекцію. Це диктує необхідність здійснення відповідних клінічних випробувань цих препаратів для профілактики інфікування та лікування коронавірусної інфекції. Результати клінічних випробувань можуть стати інноваційною стратегією в лікуванні хворих на COVID-19.

 


Ключові слова


Квертин; Корвітин; кверцетин; цитокіновий шторм.

Повний текст:

PDF

Посилання


Behrens, E. M., & Koretzky, G. A. (2017). Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era. Arthritis & Rheumatology, 69(6), 1135-1143. https://doi.org/10.1002/art.40071

Griffiths, M. J. D., McAuley, D. F., Perkins, G. D., Barrett, N., Blackwood, B., Boyle, A., Chee, N., Connolly, B., Dark, P., Finney, S., Salam, A., Silversides, J., Tarmey, N., Wise, M. P., & Baudouin, S. V. (2019). Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respiratory Research, 6(1), Article e000420. https://doi.org/10.1136/bmjresp-2019-000420

Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., & Katze, M. G. (2012). Into the Eye of the Cytokine Storm. Microbiology and Molecular Biology Reviews, 76(1), 16-32. https://doi.org/10.1128/mmbr.05015-11

Zhao, Z., Xie, J., Yin, M., Yang, Y., He, H., Jin, T., Li, W., Zhu, X., Xu, J., Zhao, C., Li, L., Li, Y., Mengist, H. M., Zahid, A., Yao, Z., Ding, C., Qi, Y., Gao, Y., & Ma, X. (2020, March 06). Clinical and Laboratory Profiles of 75 Hospitalized Patients with Novel Coronavirus Disease 2019 in Hefei, China. MedRxiv. https://doi.org/10.1101/2020.03.01.20029785

Barnes, B. J., Adrover, J. M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J. M., Daßler-Plenker, J., Guerci, P., Huynh, C., Knight, J. S., Loda, M., Looney, M. R., McAllister, F., Rayes, R., Renaud, S., Rousseau, S., Salvatore, S., Schwartz, R. E., Spicer, J. D., … Egeblad, M. (2020). Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Journal of Experimental Medicine, 217(6), Article e20200652. https://doi.org/10.1084/jem.20200652

Smeitink, J., Jiang, X., Pecheritsyna, S., Renkema, H., van Maanen, R., & Beyrath, J. (2020). Hypothesis: mPGES-1-Derived Prostaglandin E2, a So Far Missing Link in COVID-19 Pathophysiology? Preprints, Article 2020040180. https://doi.org/10.20944/preprints202004.0180.v1

Parasuraman, S., Anand David, A., & Arulmoli, R. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84-89. https://doi.org/10.4103/0973-7847.194044

Rana, A. C., & Gulliya, B. (2019). Chemistry and Pharmacology of Flavonoids- A Review. Indian Journal of Pharmaceutical Education and Research, 53(1), 8-20. https://doi.org/10.5530/ijper.53.1.3

Lakhanpal, P., & Rai, D. K. (2007). Quercetin: A Versatile Flavonoid. Internet Journal of Medical Update, 2(2), 20-35. https://doi.org/10.4314/ijmu.v2i2.39851

Zhang, M., Swarts, S. G., Yin, L., Liu, C., Tian, Y., Cao, Y., Swarts, M., Yang, S., Zhang, S. B., Zhang, K., Ju, S., Olek, D. J., Schwartz, L., Keng, P. C., Howell, R., Zhang, L., & Okunieff, P. (2011). Antioxidant Properties of Quercetin. In J. LaManna, M. Puchowicz, K. Xu, D. Harrison, & D. Bruley (Eds.). Oxygen Transport to Tissue XXXII (Vol. 701, pp. 283-289). Springer US. https://doi.org/10.1007/978-1-4419-7756-4_38

Ozgen, S., Kilinc, O. K., & Selamoğlu, Z. (2016). Antioxidant Activity of Quercetin: A Mechanistic Review. Turkish Journal of Agriculture - Food Science and Technology, 4(12), 1134-1138. https://doi.org/10.24925/turjaf.v4i12.1134-1138.1069

Xiao, X., Shi, D., Liu, L., Wang, J., Xie, X., Kang, T., & Deng, W. (2011). Quercetin Suppresses Cyclooxygenase-2 Expression and Angiogenesis through Inactivation of P300 Signaling. PLOS ONE, 6(8), Article e22934. https://doi.org/10.1371/journal.pone.0022934

Warren, C. A., Paulhill, K. J., Davidson, L. A., Lupton, J. R., Taddeo, S. S., Hong, M. Y., Carroll, R. J., Chapkin, R. S., & Turner, N. D. (2008). Quercetin May Suppress Rat Aberrant Crypt Foci Formation by Suppressing Inflammatory Mediators That Influence Proliferation and Apoptosis. The Journal of Nutrition, 139(1), 101-105. https://doi.org/10.3945/jn.108.096271

Maksyutina, N. P., Moibenko, A. A., Mokhort, N. A., Parkhomenko, A. N., Shalamai, A. S., Frantsuzova, S. B., Pilipchuk, L. B., Dosenko, V. E., Pashevin, D. A., Portnichenko, A. G., Nagibin, V. S., Pavlyuchenko, V. B., Kuz'menko, M. A., Kozhukhov, S. N., & Koval', E. A. (2012). Bioflavonoidy kak organoprotektory: kvertsetin, korvitin, kvertin [Bioflavonoids as organoprotectors: Quercetin, Corvitin, Quertin]. Naukova dumka. [in Russian].

Mlcek, J., Jurikova, T., Skrovankova, S., & Sochor, J. (2016). Quercetin and Its Anti-Allergic Immune Response. Molecules, 21(5), Article 623. https://doi.org/10.3390/molecules21050623

Weng, Z., Zhang, B., Asadi, S., Sismanopoulos, N., Butcher, A., Fu, X., Katsarou-Katsari, A., Antoniou, C., & Theoharides, T. C. (2012). Quercetin Is More Effective than Cromolyn in Blocking Human Mast Cell Cytokine Release and Inhibits Contact Dermatitis and Photosensitivity in Humans. PLOS ONE, 7(3), Article e33805. https://doi.org/10.1371/journal.pone.0033805

Oh, W. J., Endale, M., Park, S.-C., Cho, J. Y., & Rhee, M. H. (2012). Dual Roles of Quercetin in Platelets: Phosphoinositide-3-Kinase and MAP Kinases Inhibition, and cAMP-Dependent Vasodilator-Stimulated Phosphoprotein Stimulation. Evidence-Based Complementary and Alternative Medicine, 2012, Article 485262. https://doi.org/10.1155/2012/485262

García-Mediavilla, V., Crespo, I., Collado, P. S., Esteller, A., Sánchez-Campos, S., Tuñón, M. J., & González-Gallego, J. (2007). The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. European Journal of Pharmacology, 557(2-3), 221-229. https://doi.org/10.1016/j.ejphar.2006.11.014

Guardia, T., Rotelli, A. E., Juarez, A. O., & Pelzer, L. E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco, 56(9), 683-687. https://doi.org/10.1016/s0014-827x(01)01111-9

Mamani-Matsuda, M., Kauss, T., Al-Kharrat, A., Rambert, J., Fawaz, F., Thiolat, D., Moynet, D., Coves, S., Malvy, D., & Mossalayi, M. D. (2006). Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochemical Pharmacology, 72(10), 1304-1310. https://doi.org/10.1016/j.bcp.2006.08.001

Mkhize, N. V. P., Qulu, L., & Mabandla, M. V. (2017). The Effect of Quercetin on Pro- and Anti-Inflammatory Cytokines in a Prenatally Stressed Rat Model of Febrile Seizures. Journal of Experimental Neuroscience, 11. https://doi.org/10.1177/1179069517704668

Leyva-López, N., Gutierrez-Grijalva, E., Ambriz-Perez, D., & Heredia, J. (2016). Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. International Journal of Molecular Sciences, 17(6), Article 921. https://doi.org/10.3390/ijms17060921

Nair, M. P., Mahajan, S., Reynolds, J. L., Aalinkeel, R., Nair, H., Schwartz, S. A., & Kandaswami, C. (2006). The Flavonoid Quercetin Inhibits Proinflammatory Cytokine (Tumor Necrosis Factor Alpha) Gene Expression in Normal Peripheral Blood Mononuclear Cells via Modulation of the NF-κβ System. Clinical and Vaccine Immunology, 13(3), 319-328. https://doi.org/10.1128/cvi.13.3.319-328.2006

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F., & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395(10234), 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5

Shen, Y., Ward, N. C., Hodgson, J. M., Puddey, I. B., Wang, Y., Zhang, D., Maghzal, G. J., Stocker, R., & Croft, K. D. (2013). Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: A critical role for heme oxygenase-1. Free Radical Biology and Medicine, 65, 908-915. https://doi.org/10.1016/j.freeradbiomed.2013.08.185

Morales, A. I., Vicente-Sánchez, C., Jerkic, M., Santiago, J. M., Sánchez-González, P. D., Pérez-Barriocanal, F., & López-Novoa, J. M. (2006). Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicology and Applied Pharmacology, 210(1-2), 128-135. https://doi.org/10.1016/j.taap.2005.09.006

Perez-Vizcaino, F., Duarte, J., & Andriantsitohaina, R. (2006). Endothelial function and cardiovascular disease: Effects of quercetin and wine polyphenols. Free Radical Research, 40(10), 1054-1065. https://doi.org/10.1080/10715760600823128

Sanchez, M., Lodi, F., Vera, R., Villar, I. C., Cogolludo, A., Jimenez, R., Moreno, L., Romero, M., Tamargo, J., Perez-Vizcaino, F., & Duarte, J. (2007). Quercetin and Isorhamnetin Prevent Endothelial Dysfunction, Superoxide Production, and Overexpression of p47phox Induced by Angiotensin II in Rat Aorta. The Journal of Nutrition, 137(4), 910-915. https://doi.org/10.1093/jn/137.4.910

Jones, H., Gordon, A., Magwenzi, S., Naseem, K., Atkin, S., & Courts, F. (2014). The dietary flavonoid quercetin modulates endothelial nitric oxide:superoxide imbalance via expression changes in p47phox under hypertensive conditions in vitro. Heart, 100(Suppl. 4), Article A3-A4. https://doi.org/10.1136/heartjnl-2014-306916.9

Guerrero, J. A., Navarro-Nuñez, L., Lozano, M. L., Martínez, C., Vicente, V., Gibbins, J. M., & Rivera, J. (2007). Flavonoids inhibit the platelet TxA2 signalling pathway and antagonize TxA2 receptors (TP) in platelets and smooth muscle cells. British Journal of Clinical Pharmacology, 64(2), 133-144. https://doi.org/10.1111/j.1365-2125.2007.02881.x

Hubbard, G. P., Stevens, J. M., Cicmil, M., Sage, T., Jordan, P. A., Williams, C. M., Lovegrove, J. A., & Gibbins, J. M. (2003). Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. Journal of Thrombosis and Haemostasis, 1(5), 1079-1088. https://doi.org/10.1046/j.1538-7836.2003.00212.x

Hubbard, G. P., Wolffram, S., Lovegrove, J. A., & Gibbins, J. M. (2004). Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. Journal of Thrombosis and Haemostasis, 2(12), 2138-2145. https://doi.org/10.1111/j.1538-7836.2004.01067.x

Mardla, V., Kobzar, G., & Samel, N. (2004). Potentiation of antiaggregating effect of prostaglandins by α-tocopherol and quercetin. Platelets, 15(5), 319-324. https://doi.org/10.1080/09537100410001710263

Guerrero, J. A., Lozano, M. L., Castillo, J., Benavente-García, O., Vicente, V., & Rivera, J. (2005). Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. Journal of Thrombosis and Haemostasis, 3(2), 369-376. https://doi.org/10.1111/j.1538-7836.2004.01099.x

Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints, Article 2020030226. https://doi.org/10.20944/preprints202003.0226.v1

Yi, L., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., Zhang, H., Luo, H., Zhu, L., Jiang, P., Chen, L., Shen, Y., Luo, M., Zuo, G., Hu, J., Duan, D., Nie, Y., Shi, X., Wang, W., … Xu, X. (2004). Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells. Journal of Virology, 78(20), 11334-11339. https://doi.org/10.1128/JVI.78.20.11334-11339.2004

Jo, S., Kim, S., Shin, D. H., & Kim, M.-S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145-151. https://doi.org/10.1080/14756366.2019.1690480

Gong, S.-J., Su, X.-J., Yu, H.-P., Li, J., Qin, Y.-J., Xu, Q., & Luo, W.-S. (2008). A study on anti-SARS-CoV 3CL protein of flavonoids from litchi chinensis sonn core. Chinese Pharmacological Bulletin, 24, 699-700.

Lin, C.-W., Tsai, F.-J., Tsai, C.-H., Lai, C.-C., Wan, L., Ho, T.-Y., Hsieh, C.-C., & Chao, P.-D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68(1), 36-42. https://doi.org/10.1016/j.antiviral.2005.07.002

Nguyen, T. T. H., Woo, H.-J., Kang, H.-K., Nguyen, V. D., Kim, Y.-M., Kim, D.-W., Ahn, S.-A., Xia, Y., & Kim, D. (2012). Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34(5), 831-838. https://doi.org/10.1007/s10529-011-0845-8

Jo, S., Kim, H., Kim, S., Shin, D. H., & Kim, M. (2019). Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chemical Biology & Drug Design, 94(6), 2023-2030. https://doi.org/10.1111/cbdd.13604

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, Inflammation and Immunity. Nutrients, 8(3), Article 167. https://doi.org/10.3390/nu8030167

Alrawaiq, N. S., & Abdullah, A. (2014). A Review of Flavonoid Quercetin: Metabolism, Bioactivity and Antioxidant Properties. International Journal of Pharm Tech Research, 6(3), 933-941.

Kumar, R., Vijayalakshmi, S., & Nadanasabapathi, S. (2017). Health Benefits of Quercetin. Defence Life Science Journal, 2(2), 142-151. https://doi.org/10.14429/dlsj.2.11359

Fortunato, L. R., Alves, C. de F., Teixeira, M. M., & Rogerio, A. P. (2012). Quercetin: a flavonoid with the potential to treat asthma. Brazilian Journal of Pharmaceutical Sciences, 48(4), 589-599. https://doi.org/10.1590/s1984-82502012000400002

Bischoff, S. C. (2008). Quercetin: potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition and Metabolic Care, 11(6), 733-740. https://doi.org/10.1097/mco.0b013e32831394b8

Wong, G., He, S., Siragam, V., Bi, Y., Mbikay, M., Chretien, M., & Qiu, X. (2017). Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virologica Sinica, 32(6), 545-547. https://doi.org/10.1007/s12250-017-4057-9

Yao, C., Xi, C., Hu, K., Gao, W., Cai, X., Qin, J., Lv, S., Du, C., & Wei, Y. (2018). Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virology Journal, 15(1), Article 116. https://doi.org/10.1186/s12985-018-1023-6

Smith, M., & Smith, J. C. (2020). Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.11871402

Kumar, P., Khanna, M., Srivastava, V., Tyagi, Y. K., Raj, H. G., & Ravi, K. (2005). Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection. Experimental Lung Research, 31(5), 449-459. https://doi.org/10.1080/019021490927088

Chornomydz, I. B. (2011). Kliniko-patohenetychne obgruntuvannia zastosuvannia kvertsytynu u kompleksnomu likuvanni ditei iz hostroiu pozalikarnianoiu pnevmoniieiu [Clinical and nosotropic ground of application of quercetin in complex treatment of children with acute extrahospital pneumonia]. Visnyk naukovykh doslidzhen, (1), 34-36. [in Ukrainian].

Fedortsiv, O. Ye., Chornomydz, I. B., & Behosh, N. B. (2013). Klinichna efektyvnist vykorystannia kvertsetynu u kompleksnomu likuvanni ditei, khvorykh na pozalikarnianu pnevmoniiu [Clinical efficiency quercetin in complex treatment of children with community-acquired pneumonia]. Aktualni pytannia pediatrii, akusherstva ta hinekolohii, (2), 7-9. [in Ukrainian].

Dziublyk, O. Ya., Stezhka, V. A., Nedlinska, N. M., Iachnyk, V. A., Kapitan, G. B., Mukhin, A. A., & Chechel, L. V. (2013). Etiopatohenetychni aspekty likuvannia patsiientiv iz virus-indukovanym zahostrenniam bronkhialnoi astmy [Etiopathogenic aspects of treatment virus-induced acute asthma]. Astma ta alerhiia, (2), 12-18. [in Ukrainian].

Marik, P. (2020, May 5). EVMS critical care COVID-19 management protocol. EVMS Medical Group. https://www.evms.edu/media/evms_public/departments/internal_medicine/EVMS_Critical_Care_COVID-19_Protocol.pdf

Askari, G., Ghiasvand, R., Feizi, A., Ghanadian, S. M., & Karimian, J. (2012). The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. Journal of Research in Medical Sciences, 17(7), 637-641. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685779/

Taylor-Vaisey, N. (2020, February 24). A made-in-Canada solution to the coronavirus outbreak? The best hope for an antiviral drug may come from Michel Chrétien's Montreal lab. Macleans.ca. https://www.macleans.ca/news/canada/a-made-in-canada-solution-to-the-coronavirus-outbreak/

Ganesan, S., Faris, A. N., Comstock, A. T., Wang, Q., Nanua, S., Hershenson, M. B., & Sajjan, U. S. (2012). Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Research, 94(3), 258-271. https://doi.org/10.1016/j.antiviral.2012.03.005

Lalani, S., & Poh, C. L. (2020). Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses, 12(2), Article 184. https://doi.org/10.3390/v12020184

Bachmetov, L., Gal-Tanamy, M., Shapira, A., Vorobeychik, M., Giterman-Galam, T., Sathiyamoorthy, P., Golan-Goldhirsh, A., Benhar, I., Tur-Kaspa, R., & Zemel, R. (2012). Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. Journal of Viral Hepatitis, 19(2), Article e81-e88. https://doi.org/10.1111/j.1365-2893.2011.01507.x

Lu, N., Khachatoorian, R., & French, S. W. (2012). Quercetin: bioflavonoids as part of interferon-free hepatitis C therapy? Expert Review of Anti-Infective Therapy, 10(6), 619-621. https://doi.org/10.1586/eri.12.52

Johari, J., Kianmehr, A., Mustafa, M., Abubakar, S., & Zandi, K. (2012). Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus. International Journal of Molecular Sciences, 13(12), 16785-16795. https://doi.org/10.3390/ijms131216785

Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., & Yang, J. (2016). Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses, 8(1), Article 6. https://doi.org/10.3390/v8010006

Choi, H. J., Song, J. H., Park, K. S., & Kwon, D. H. (2009). Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. European Journal of Pharmaceutical Sciences, 37(3-4), 329-333. https://doi.org/10.1016/j.ejps.2009.03.002

Veckenstedt, A., Güttner, J., & Béládi, I. (1987). Synergistic action of quercetin and murine alpha/beta interferon in the treatment of Mengo virus infection in mice. Antiviral Research, 7(3), 169-178. https://doi.org/10.1016/0166-3542(87)90005-2

Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: promising natural compounds against viral infections. Archives of Virology, 162(9), 2539-2551. https://doi.org/10.1007/s00705-017-3417-y

Kelly, G. S. (2011). Quercetin. Monograph. Alternative Medicine Review : A Journal of Clinical Therapeutic, 16(2), 172-194.

Shebeko, S. K., Zupanets, I. A., Popov, O. S., Tarasenko, O. O., & Shalamay, A. S. (2018). Chapter 27 - Effects of Quercetin and Its Combinations on Health. In R. R. Watson, V. R. Preedy, & S. Zibadi (Eds.), Polyphenols: Mechanisms of Action in Human Health and Disease (2nd ed., pp. 373-394). Academic Press. https://doi.org/10.1016/b978-0-12-813006-3.00027-1

Usenko, V. F., Zupanets, I. A., Tarasenko, O. O., & Shebeko, S. K. (2012). Eksperymentalne doslidzhennia farmakokinetychnykh vlastyvostei kvertsetynu pry peroralnomu zastosuvanni z modyfikatoramy rozchynnosti [Experimental study of pharmacokinetic properties of quercetin at oral apрlication with modifiers of solubility]. Medychna i klinichna khimiia, 14(1), 91-95. [in Ukrainian].

Moibenko, O. O., Kuzmenko, M. O., Pavliuchenko, V. B., Dosenko, V. Ye., & Tumanovska, L. V. (2011). Sposib poperedzhennia remodeliuvannia miokarda [Method for preventing remodeling of myocardium]. Ukraine Patent UA 60950. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=160680 [in Ukrainian].

Mamchur, V. Y., Shalamai, A S., Starchenko, M. H., Kravchenko, K. O., & Chernov, Ye. O. (2005). Vykorystannia novykh likarskykh form kvertsetynu dlia profilaktyky doksorubitsynovoi kardiomiopatii v eksperymenti [The use of new dosage forms of Quercetin to prevent doxorubicin cardiomyopathy in the experiment]. Medychni perspektyvy, 10(4), 4-8. [in Ukrainian].

Lukjanchuk, V. D., & Voitenko, A. G. (2008). Kinetyka vilnoradykalnykh reaktsii u shchuriv z medykamentoznym hepatytom pry zastosuvanni tabletok «Kvertsetyn» [Kinetics of free radical reactions in rats with medical hepatitis in usage of «Quercetine» tablets]. Farmakolohiia ta likarska toksykolohiia, (1-3), 52-56. [in Ukrainian].

Gorbenko, N. I., Borikov, O. Yu., Ivanova, O. V., Taran, E. V., Litvinova, Т. S., Kiprych, T. V., & Shalamai, A. S. (2019). The effect of quercetin on oxidative stress markers and mitochondrial permeability transition in the heart of rats with type 2 diabetes. The Ukrainian Biochemical Journal, 91(5), 46-54. https://doi.org/10.15407/ubj91.05.046

Zupanets, I. A., Shebeko, S. K., & Kharchenko, D. S. (2009). Doslidzhennia vplyvu parenteralnoi formy kvertsetynu na perebih hostroi nyrkovoi nedostatnosti u shchuriv [Study of the influence of quercetin parenteral form on clinical course of acute kidney failure in rats]. Medychna khimiia, 1(11), 98-102. [in Ukrainian].

Zupanets, I. A., Shebeko, S. K., & Kharchenko, D. S. (2009). Eksperymentalne vyvchennia farmakolohichnykh vlastyvostei parenteralnoi formy kvertsetynu v umovakh rozvytku khronichnoi nyrkovoi nedostatnosti [The experimental study of pharmacological properties of the quercetin parenteral form in conditions of development of the chronic renal insufficiency]. Visnyk farmatsii, (2), 75-78. [in Ukrainian].

Kharchenko, D. S., Zupanets, I. A., & Shebeko, S. K. (2009). Doslidzhennia vplyvu kvertsetynu pry parenteralnomu vvedenni na biokhimichni pokaznyky shchuriv iz nyrkovoiu nedostatnistiu na tli khronichnoho hlomerulonefrytu [Study of an impact of quercetin at parenteral introduction on biochemical indices of rats with renal insufficiency against the background of chronic glomerulonephritis]. Farmakom, (2), 117-121. [in Ukrainian].

Mamchur, V., & Slesarchuk, V. (2008). Zakhysna diia preparativ kvertsetynu za umov modeliuvannia hostroho immobilizatsiinoho stresu [Protective action of Quercetin’s preparations in the conditions of design of sharp immobilization stress]. Farmakolohiia ta likarska toksykolohiia, (1-3), 38-43. [in Ukrainian].

Usenko, V. F. Vplyv preparatu «Kvertyn» na alteratyvne ta proliferatyvne zapalennia v eksperymenti [The effect of the drug «Quertin» on alternative and proliferative inflammation in the experiment]. Klinichna farmatsiia, 15(3), 36-38. [in Ukrainian].

Zupanets, I. A., Pidpruzhnykov, Y. V., Sabko, V. E., Bezugla, N. P., & Shebeko, S. K. (2019). UPLC-MS/MS quantification of quercetin in plasma and urine following parenteral administration. Clinical Phytoscience, 5(1), Article 11. https://doi.org/10.1186/s40816-019-0107-1

Parkhomenko, A. N. (2008). Metabolicheskaya terapiya, ili kardioprotektsiya pri ishemicheskoi bolezni serdtsa: itogi i perspektivy [Metabolic therapy or cardioprotection in coronary heart disease: results and prospects]. Ukrainskyi medychnyi chasopys, (4), 15-19. [in Russian].

Parkhomenko, A. N., Kozhukhov, S. N., Moibenko, A. A., & Gavrilenko, T. I. (2008). Blokator 5-lipoksigenazyi korvitin: vliyanie na markeryi vospaleniya i endotelialnoy disfunktsii u bolnyih s ostryim infarktom miokarda [Corvitin 5-lipoxygenase blocker: effect on inflammatory markers and endothelial dysfunction in patients with acute myocardial infarction]. Ratsionalna farmakoterapiia, (2/1), 85-88. [in Russian].

Parkhomenko, A. N., & Kozhukhov, S. N. (2014). Rezul'taty otkrytogo randomizirovannogo issledovaniya po izucheniyu perenosimosti i effektivnosti preparata Korvitin® u patsientov s zastoinoi serdechnoi nedostatochnost'yu i sistolicheskoi disfunktsiei levogo zheludochka [The results of an open randomized study to investigate the tolerability and efficacy of Corvitin® in patients with congestive heart failure and left ventricular systolic dysfunction]. Ukrainskyi medychnyi chasopys, (4), 71-76. [in Russian].

Zupanets, I. A., Shebeko, S. K., & Kharchenko, D. S. (2009). Doslidzhennia hostroi toksychnosti ta serednoefektyvnykh doz kvertsetynu pry parenteralnomu vvedenni v umovakh rozvytku nyrkovoi nedostatnosti u shchuriv [Study of the acute toxicity and mean effective doses of intraperitoneal form of quercetin under conditions of the development of kidney failure in rats]. Farmakolohiia ta likarska toksykolohiia, (1), 28-33. [in Ukrainian].




ПАТОЛОГІЯ   Лицензия Creative Commons
Запорізький державний медичний університет