Mesenchymal stem cells: diversity

Authors

DOI:

https://doi.org/10.14739/2310-1237.2023.1.272938

Keywords:

mesenchymal stem cells, genes, regeneration

Abstract

Mesenchymal stem cells (MSCs) are diverse in terms of plastic, secretory and immunophenotypic features, which is due to the peculiarities of their genetic landscape. MSCs like other body cells are the result of the implementation of genetic information. However, some cells at different stages of histogenesis leave it. Such resident cells in tissues are stem cells. They are in a state of plastic quiescence and their genome does not undergo changes that would lead to commitment / differentiation. Although, these cells show a certain activity, producing various biologically active factors. It is logical to assume that the cells emerging from the process of histogenesis at its various stages will have different genetic landscapes, immunophenotypes and secretory potentials. The activation of MSCs occurs under conditions of physiological or reparative regeneration. Moreover, on the second hand it is explosive. Under natural conditions, the activation of MSCs during damage leads to their differentiation into fibroblasts and the formation of a connective tissue scar. But such consequences of reparation often come into conflict with the goal of treatment, when the task is not the formation of a scar, but the restoration of the parenchyma of the organ and its function. Therefore, the effects that will be obtained when using MSCs will depend on their initial state and methods of management.

Aim. To analyze literature data on mesenchymal stem cells that reflect their ability to differentiate and secrete regulatory factors, immunophenotypic features and genetic landscape that may underlie their diversity.

Conclusions. To obtain the desired result from the use of MSCs in regenerative medicine many factors must be taken into account. But data in this area is still fragmentary and often ambiguous. In addition, even taking into account the known factors in their various combinations is a very difficult task in the management of MSC. Given the unconditional priority of genetic and molecular research of MSCs the empirical method of studying the plastic and physiological properties of MSCs remains relevant today. It can just not create the basis for the development of the latest treatment methods, but also determine the direction of research in genetic and molecular research.

Author Biographies

O. M. Grabovyi, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, Dsc, Professor of the Department of Histology and Embryology

N. M. Nevmerzhytska, Bogomolets National Medical University, Kyiv, Ukraine

Teaching Assistant of the Department of Histology and Embryology

L. M. Yaremenko, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, Dsc, Professor of the Department of Histology and Embryology

H. B. Kostynskyi, Private Higher Education Institution “International European University”, Kyiv, Ukraine

MD, PhD, Dsc, Professor of the Department of Medical and Biological Disciplines

A. S. Demydchuk, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, Associate Professor of the Department of Histology and Embryology

H. Yu. Kondaurova, Bogomolets National Medical University, Kyiv, Ukraine

MD, PhD, Associate Professor of the Department of Histology and Embryology

References

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. j, & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. https://doi.org/10.1080/14653240600855905

Costa, L. A., Eiro, N., Fraile, M., Gonzalez, L. O., Saá, J., Garcia-Portabella, P., Vega, B., Schneider, J., & Vizoso, F. J. (2021). Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cellular and molecular life sciences : CMLS, 78(2), 447-467. https://doi.org/10.1007/s00018-020-03600-0

Berebichez-Fridman, R., & Montero-Olvera, P. R. (2018). Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos University medical journal, 18(3), e264-e277. https://doi.org/10.18295/squmj.2018.18.03.002

Mastrolia, I., Foppiani, E. M., Murgia, A., Candini, O., Samarelli, A. V., Grisendi, G., Veronesi, E., Horwitz, E. M., & Dominici, M. (2019). Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem cells translational medicine, 8(11), 1135-1148. https://doi.org/10.1002/sctm.19-0044

Mathot, F., Shin, A. Y., & Van Wijnen, A. J. (2019). Targeted stimulation of MSCs in peripheral nerve repair. Gene, 710, 17-23. https://doi.org/10.1016/j.gene.2019.02.078

Maqsood, M., Kang, M., Wu, X., Chen, J., Teng, L., & Qiu, L. (2020). Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life sciences, 256, 118002. https://doi.org/10.1016/j.lfs.2020.118002

Hu, M. S., Borrelli, M. R., Lorenz, H. P., Longaker, M. T., & Wan, D. C. (2018). Mesenchymal Stromal Cells and Cutaneous Wound Healing: A Comprehensive Review of the Background, Role, and Therapeutic Potential. Stem cells international, 2018, 6901983. https://doi.org/10.1155/2018/6901983

Shafei, A. E., Ali, M. A., Ghanem, H. G., Shehata, A. I., Abdelgawad, A. A., Handal, H. R., Talaat, K. A., Ashaal, A. E., & El-Shal, A. S. (2017). Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. The journal of gene medicine, 19(12), 10.1002/jgm.2995. https://doi.org/10.1002/jgm.2995

Brown, C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D., Dodds, R., Govind, C. K., & Chaudhry, G. R. (2019). Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of tissue engineering and regenerative medicine, 13(9), 1738-1755. https://doi.org/10.1002/term.2914

Labusca, L., Herea, D. D., & Mashayekhi, K. (2018). Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World journal of stem cells, 10(5), 43-56. https://doi.org/10.4252/wjsc.v10.i5.43

Cagliani, J., Grande, D., Molmenti, E. P., Miller, E. J., & Rilo, H. L. R. (2017). Immunomodulation by Mesenchymal Stromal Cells and Their Clinical Applications. Journal of stem cell and regenerative biology, 3(2), 10.15436/2471-0598.17.022. https://doi.org/10.15436/2471-0598.17.022

Wu, R., Liu, C., Deng, X., Chen, L., Hao, S., & Ma, L. (2020). Enhanced alleviation of aGVHD by TGF-β1-modified mesenchymal stem cells in mice through shifting MΦ into M2 phenotype and promoting the differentiation of Treg cells. Journal of cellular and molecular medicine, 24(2), 1684-1699. https://doi.org/10.1111/jcmm.14862

Liu, S., Liu, F., Zhou, Y., Jin, B., Sun, Q., & Guo, S. (2020). Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Frontiers in immunology, 11, 1076. https://doi.org/10.3389/fimmu.2020.01076

Domenis, R., Cifù, A., Quaglia, S., Pistis, C., Moretti, M., Vicario, A., Parodi, P. C., Fabris, M., Niazi, K. R., Soon-Shiong, P., & Curcio, F. (2018). Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Scientific reports, 8(1), 13325. https://doi.org/10.1038/s41598-018-31707-9

Hastreiter, A. A., Dos Santos, G. G., Makiyama, E. N., Santos, E. W. C., Borelli, P., & Fock, R. A. (2021). Effects of protein malnutrition on hematopoietic regulatory activity of bone marrow mesenchymal stem cells. The Journal of nutritional biochemistry, 93, 108626. https://doi.org/10.1016/j.jnutbio.2021.108626

Jiang, W., & Xu, J. (2020). Immune modulation by mesenchymal stem cells. Cell proliferation, 53(1), e12712. https://doi.org/10.1111/cpr.12712

Müller, L., Tunger, A., Wobus, M., von Bonin, M., Towers, R., Bornhäuser, M., Dazzi, F., Wehner, R., & Schmitz, M. (2021). Immunomodulatory Properties of Mesenchymal Stromal Cells: An Update. Frontiers in cell and developmental biology, 9, 637725. https://doi.org/10.3389/fcell.2021.637725

Hassanzadeh, A., Rahman, H. S., Markov, A., Endjun, J. J., Zekiy, A. O., Chartrand, M. S., Beheshtkhoo, N., Kouhbanani, M. A. J., Marofi, F., Nikoo, M., & Jarahian, M. (2021). Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem cell research & therapy, 12(1), 297. https://doi.org/10.1186/s13287-021-02378-7

Shimizu, Y., Ntege, E. H., & Sunami, H. (2022). Current regenerative medicine-based approaches for skin regeneration: A review of literature and a report on clinical applications in Japan. Regenerative therapy, 21, 73-80. https://doi.org/10.1016/j.reth.2022.05.008

Alonso-Goulart, V., Carvalho, L. N., Marinho, A. L. G., de Oliveira Souza, B. L., de Aquino Pinto Palis, G., Lage, H. G. D., de Lima, I. L., Guimarães, L. D., Peres, L. C., Silveira, M. M., Lopes, G. H. N. L., Ferreira, L. B., & de Souza Castro-Filice, L. (2021). Biomaterials and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine: A Systematic Review. Materials, 14(16), 4641. https://doi.org/10.3390/ma14164641

Pushp, P., Sahoo, B., Ferreira, F. C., Sampaio Cabral, J. M., Fernandes-Platzgummer, A., & Gupta, M. K. (2020). Functional comparison of beating cardiomyocytes differentiated from umbilical cord-derived mesenchymal/stromal stem cells and human foreskin-derived induced pluripotent stem cells. Journal of biomedical materials research. Part A, 108(3), 496-514. https://doi.org/10.1002/jbm.a.36831

Berebichez-Fridman, R., Gómez-García, R., Granados-Montiel, J., Berebichez-Fastlicht, E., Olivos-Meza, A., Granados, J., Velasquillo, C., & Ibarra, C. (2017). The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications. Stem cells international, 2017, 2638305. https://doi.org/10.1155/2017/2638305

Wartalski, K., Gorczyca, G., Wiater, J., Tabarowski, Z., & Duda, M. (2021). Porcine ovarian cortex-derived putative stem cells can differentiate into endothelial cells in vitro. Histochemistry and cell biology, 156(4), 349-362. https://doi.org/10.1007/s00418-021-02016-6

Afjeh-Dana, E., Naserzadeh, P., Moradi, E., Hosseini, N., Seifalian, A. M., & Ashtari, B. (2022). Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem cell reviews and reports, 18(8), 2566-2592. https://doi.org/10.1007/s12015-021-10280-1

Luce, E., Messina, A., Duclos-Vallée, J. C., & Dubart-Kupperschmitt, A. (2021). Advanced Techniques and Awaited Clinical Applications for Human Pluripotent Stem Cell Differentiation into Hepatocytes. Hepatology, 74(2), 1101-1116. https://doi.org/10.1002/hep.31705

Chen, H., Li, S., Xu, W., Hong, Y., Dou, R., Shen, H., Liu, X., Wu, T., & He, J. C. (2021). Interleukin-17A promotes the differentiation of bone marrow mesenchymal stem cells into neuronal cells. Tissue & cell, 69, 101482. https://doi.org/10.1016/j.tice.2020.101482

Ning, K., Yang, B., Chen, M., Man, G., Liu, S., Wang, D. E., & Xu, H. (2022). Functional Heterogeneity of Bone Marrow Mesenchymal Stem Cell Subpopulations in Physiology and Pathology. International journal of molecular sciences, 23(19), 11928. https://doi.org/10.3390/ijms231911928

Chopra, H., Hung, M. K., Kwong, D. L., Zhang, C. F., & Pow, E. H. N. (2018). Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem cells international, 2018, 9847015. https://doi.org/10.1155/2018/9847015

Alizadeh, R., Bagher, Z., Kamrava, S. K., Falah, M., Ghasemi Hamidabadi, H., Eskandarian Boroujeni, M., Mohammadi, F., Khodaverdi, S., Zare-Sadeghi, A., Olya, A., & Komeili, A. (2019). Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. Journal of chemical neuroanatomy, 96, 126-133. https://doi.org/10.1016/j.jchemneu.2019.01.003

Kozlowska, U., Krawczenko, A., Futoma, K., Jurek, T., Rorat, M., Patrzalek, D., & Klimczak, A. (2019). Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World journal of stem cells, 11(6), 347-374. https://doi.org/10.4252/wjsc.v11.i6.347

Wang, Y., Xu, J., Chang, L., Meyers, C. A., Zhang, L., Broderick, K., Lee, M., Peault, B., & James, A. W. (2019). Relative contributions of adipose-resident CD146+ pericytes and CD34+ adventitial progenitor cells in bone tissue engineering. NPJ Regenerative medicine, 4, 1. https://doi.org/10.1038/s41536-018-0063-2

Uemura, M. T., Maki, T., Ihara, M., Lee, V. M. Y., & Trojanowski, J. Q. (2020). Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Frontiers in aging neuroscience, 12, 80. https://doi.org/10.3389/fnagi.2020.00080

Zimmermann, K. (1923). Der feinere bau der blutcapillaren. Zeitschrift für Anatomie und Entwicklungsgeschichte, 68(1), 29-109. https://doi.org/10.1007/BF02593544

Beard, D. J., Brown, L. S., & Sutherland, B. A. (2020). The rise of pericytes in neurovascular research. Journal of cerebral blood flow and metabolism, 40(12), 2366-2373. https://doi.org/10.1177/0271678X20958497

Shaw, I., Rider, S., Mullins, J., Hughes, J., & Péault, B. (2018). Pericytes in the renal vasculature: roles in health and disease. Nature reviews. Nephrology, 14(8), 521-534. https://doi.org/10.1038/s41581-018-0032-4

Yamazaki, T., & Mukouyama, Y. S. (2018). Tissue Specific Origin, Development, and Pathological Perspectives of Pericytes. Frontiers in cardiovascular medicine, 5, 78. https://doi.org/10.3389/fcvm.2018.00078

Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem cells, 37(7), 855-864. https://doi.org/10.1002/stem.3016

Mohamed-Ahmed, S., Fristad, I., Lie, S. A., Suliman, S., Mustafa, K., Vindenes, H., & Idris, S. B. (2018). Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem cell research & therapy, 9(1), 168. https://doi.org/10.1186/s13287-018-0914-1

Yamatani, Y., & Nakai, K. (2022). Comprehensive comparison of gene expression diversity among a variety of human stem cells. NAR genomics and bioinformatics, 4(4), lqac087. https://doi.org/10.1093/nargab/lqac087

He, Q., Ye, Z., Zhou, Y., & Tan, W. S. (2018). Comparative study of mesenchymal stem cells from rat bone marrow and adipose tissue. Turkish journal of biology = Turk biyoloji dergisi, 42, 477-489. https://doi.org/10.3906/biy-1802-52

Kargozar, S., Mozafari, M., Hashemian, S. J., Brouki Milan, P., Hamzehlou, S., Soleimani, M., Joghataei, M. T., Gholipourmalekabadi, M., Korourian, A., Mousavizadeh, K., & Seifalian, A. M. (2018). Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton’s jelly, and adipose tissue. Journal of biomedical materials research. Part B, Applied biomaterials, 106(1), 61-72. https://doi.org/10.1002/jbm.b.33814

Sun, Y., Chen, S., Zhang, X., & Pei, M. (2019). Significance of Cellular Cross-Talk in Stromal Vascular Fraction of Adipose Tissue in Neovascularization. Arteriosclerosis, thrombosis, and vascular biology, 39(6), 1034-1044. https://doi.org/10.1161/ATVBAHA.119.312425

Mastrangelo, F., Scacco, S., Ballini, A., Quaresima, R., Gnoni, A., De Vito, D., Scarano, A., Dipalma, G., Gargiulo Isacco, C., Cantore, S., Coscia, M. F., Pettini, F., Sammartino, G., Cicciù, M., Conti, P., & Lo Muzio, L. (2019). A pilot study of human mesenchymal stem cells from visceral and sub-cutaneous fat tissue and their differentiation to osteogenic phenotype. European review for medical and pharmacological sciences, 23(7), 2924-2934. https://doi.org/10.26355/eurrev_201904_17572

Lee, Y. K., Chung, Y., Lee, J. H., Chun, J. M., & Park, J. H. (2020). The Intricate Role of p53 in Adipocyte Differentiation and Function. Cells, 9(12), 2621. https://doi.org/10.3390/cells9122621

Velletri, T., Huang, Y., Wang, Y., Li, Q., Hu, M., Xie, N., Yang, Q., Chen, X., Chen, Q., Shou, P., Gan, Y., Candi, E., Annicchiarico-Petruzzelli, M., Agostini, M., Yang, H., Melino, G., Shi, Y., & Wang, Y. (2021). Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin. Cell death and differentiation, 28(1), 156-169. https://doi.org/10.1038/s41418-020-0590-4

Zhang, Y., Zhong, Y., Liu, W., Zheng, F., Zhao, Y., Zou, L., & Liu, X. (2022). PFKFB3-mediated glycometabolism reprogramming modulates endothelial differentiation and angiogenic capacity of placenta-derived mesenchymal stem cells. Stem cell research & therapy, 13(1), 391. https://doi.org/10.1186/s13287-022-03089-3

Phunikom, N., Boonmuen, N., Kheolamai, P., Suksen, K., Manochantr, S., Tantrawatpan, C., & Tantikanlayaporn, D. (2021). Andrographolide promotes proliferative and osteogenic potentials of human placenta-derived mesenchymal stem cells through the activation of Wnt/β-catenin signaling. Stem cell research & therapy, 12(1), 241. https://doi.org/10.1186/s13287-021-02312-x

Zhang, Y., Liu, S., Guo, W., Wang, M., Hao, C., Gao, S., Zhang, X., Li, X., Chen, M., Jing, X., Wang, Z., Peng, J., Lu, S., & Guo, Q. (2018). Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis and cartilage, 26(7), 954-965. https://doi.org/10.1016/j.joca.2018.01.019

Pérez, S. E., & Haidar, Z. S. (2021). Prologue: Oro-Dental-Derived Stromal Cells for Cranio-Maxillo-Facial Tissue Engineering-Past, Present and Future. In Biomechanics and Functional Tissue Engineering. IntechOpen. https://doi.org/10.5772/intechopen.95090

Mead, B., Logan, A., Berry, M., Leadbeater, W., & Scheven, B. A. (2014). Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PloS one, 9(10), e109305. https://doi.org/10.1371/journal.pone.0109305

Čamernik, K., Mihelič, A., Mihalič, R., Marolt Presen, D., Janež, A., Trebše, R., Marc, J., & Zupan, J. (2019). Skeletal-muscle-derived mesenchymal stem/stromal cells from patients with osteoarthritis show superior biological properties compared to bone-derived cells. Stem cell research, 38, 101465. https://doi.org/10.1016/j.scr.2019.101465

Wang, J. P., Liao, Y. T., Wu, S. H., Chiang, E. R., Hsu, S. H., Tseng, T. C., & Hung, S. C. (2020). Mesenchymal stem cells from a hypoxic culture improve nerve regeneration. Journal of tissue engineering and regenerative medicine, 14(12), 1804-1814. https://doi.org/10.1002/term.3136

Salazar-Noratto, G. E., Luo, G., Denoeud, C., Padrona, M., Moya, A., Bensidhoum, M., Bizios, R., Potier, E., Logeart-Avramoglou, D., & Petite, H. (2020). Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem cells, 38(1), 22-33. https://doi.org/10.1002/stem.3079

Podsednik, A., Cabrejo, R., & Rosen, J. (2022). Adipose Tissue Uses in Peripheral Nerve Surgery. International journal of molecular sciences, 23(2), 644. https://doi.org/10.3390/ijms23020644

Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature reviews. Molecular cell biology, 12(2), 126-131. https://doi.org/10.1038/nrm3049

Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C., & Lai, P. (2021). Challenges and advances in clinical applications of mesenchymal stromal cells. Journal of hematology & oncology, 14(1), 24. https://doi.org/10.1186/s13045-021-01037-x

Ullah, M., Liu, D. D., & Thakor, A. S. (2019). Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience, 15, 421-438. https://doi.org/10.1016/j.isci.2019.05.004

Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical Trials With Mesenchymal Stem Cells: An Update. Cell transplantation, 25(5), 829-848. https://doi.org/10.3727/096368915X689622

Song, L., Webb, N. E., Song, Y., & Tuan, R. S. (2006). Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem cells, 24(7), 1707-1718. https://doi.org/10.1634/stemcells.2005-0604

Ballini, A., Di Benedetto, A., De Vito, D., Scarano, A., Scacco, S., Perillo, L., Posa, F., Dipalma, G., Paduano, F., Contaldo, M., Grano, M., Brunetti, G., Colaianni, G., Di Cosola, M., Cantore, S., & Mori, G. (2019). Stemness genes expression in naïve vs. osteodifferentiated human dental-derived stem cells. European review for medical and pharmacological sciences, 23(7), 2916-2923. https://doi.org/10.26355/eurrev_201904_17570

Petrenko, Y., Vackova, I., Kekulova, K., Chudickova, M., Koci, Z., Turnovcova, K., Kupcova Skalnikova, H., Vodicka, P., & Kubinova, S. (2020). A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Scientific reports, 10(1), 4290. https://doi.org/10.1038/s41598-020-61167-z

Jauković, A., Kukolj, T., Trivanović, D., Okić-Đorđević, I., Obradović, H., Miletić, M., Petrović, V., Mojsilović, S., & Bugarski, D. (2021). Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF. Journal of cellular physiology, 236(11), 7322-7341. https://doi.org/10.1002/jcp.30399

Ren, J., Ward, D., Chen, S., Tran, K., Jin, P., Sabatino, M., Robey, P. G., & Stroncek, D. F. (2018). Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. Journal of translational medicine, 16(1), 65. https://doi.org/10.1186/s12967-018-1400-3

Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, N. Y.), 318(5858), 1917-1920. https://doi.org/10.1126/science.1151526

Keshavarz Shahbaz, S., Mansourabadi, A. H., & Jafari, D. (2022). Genetically engineered mesenchymal stromal cells as a new trend for treatment of severe acute graft-versus-host disease. Clinical and experimental immunology, 208(1), 12-24. https://doi.org/10.1093/cei/uxac016

Rowe, R. G., & Daley, G. Q. (2019). Induced pluripotent stem cells in disease modelling and drug discovery. Nature reviews. Genetics, 20(7), 377-388. https://doi.org/10.1038/s41576-019-0100-z

Bidkhori, H. R., Bahrami, A. R., Farshchian, M., Heirani-Tabasi, A., Mirahmadi, M., Hasanzadeh, H., Ahmadiankia, N., Faridhosseini, R., Dastpak, M., Shabgah, A. G., & Matin, M. M. (2021). Mesenchymal Stem/Stromal Cells Overexpressing CXCR4R334X Revealed Enhanced Migration: A Lesson Learned from the Pathogenesis of WHIM Syndrome. Cell transplantation, 30, 9636897211054498. https://doi.org/10.1177/09636897211054498

Kim, J. Y., Nam, Y., Rim, Y. A., & Ju, J. H. (2022). Review of the Current Trends in Clinical Trials Involving Induced Pluripotent Stem Cells. Stem cell reviews and reports, 18(1), 142-154. https://doi.org/10.1007/s12015-021-10262-3

Golchin, A., Shams, F., & Karami, F. (2020). Advancing Mesenchymal Stem Cell Therapy with CRISPR/Cas9 for Clinical Trial Studies. Advances in experimental medicine and biology, 1247, 89-100. https://doi.org/10.1007/5584_2019_459

Chen, Z., Chen, Q., Du, H., Xu, L., & Wan, J. (2018). Mesenchymal stem cells and CXC chemokine receptor 4 overexpression improved the therapeutic effect on colitis via mucosa repair. Experimental and therapeutic medicine, 16(2), 821-829. https://doi.org/10.3892/etm.2018.6233

Ciullo, A., Biemmi, V., Milano, G., Bolis, S., Cervio, E., Fertig, E. T., Gherghiceanu, M., Moccetti, T., Camici, G. G., Vassalli, G., & Barile, L. (2019). Exosomal Expression of CXCR4 Targets Cardioprotective Vesicles to Myocardial Infarction and Improves Outcome after Systemic Administration. International journal of molecular sciences, 20(3), 468. https://doi.org/10.3390/ijms20030468

Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S., & Drela, K. (2019). Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem cells international, 2019, 9628536. https://doi.org/10.1155/2019/9628536

Crick F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561-563. https://doi.org/10.1038/227561a0

Ahangar, P., Mills, S. J., & Cowin, A. J. (2020). Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair. International journal of molecular sciences, 21(19), 7038. https://doi.org/10.3390/ijms21197038

Galderisi, U., Peluso, G., & Di Bernardo, G. (2022). Clinical Trials Based on Mesenchymal Stromal Cells are Exponentially Increasing: Where are We in Recent Years?. Stem cell reviews and reports, 18(1), 23-36. https://doi.org/10.1007/s12015-021-10231-w

Sveiven, S. N., & Nordgren, T. M. (2020). Lung-resident mesenchymal stromal cells are tissue-specific regulators of lung homeostasis. American journal of physiology. Lung cellular and molecular physiology, 319(2), L197-L210. https://doi.org/10.1152/ajplung.00049.2020

Ugurlu, B., & Karaoz, E. (2020). Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta histochemica, 122(8), 151634. https://doi.org/10.1016/j.acthis.2020.151634

Maruyama, K., & Imanaka-Yoshida, K. (2022). The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. International journal of molecular sciences, 23(5), 2617. https://doi.org/10.3390/ijms23052617

Wang, Y., Yu, F., Li, A., He, Z., Qu, C., He, C., Ma, X., & Zhan, H. (2022). The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis. Frontiers in pharmacology, 13, 919967. https://doi.org/10.3389/fphar.2022.919967

Published

2023-04-28

How to Cite

1.
Grabovyi OM, Nevmerzhytska NM, Yaremenko LM, Kostynskyi HB, Demydchuk AS, Kondaurova HY. Mesenchymal stem cells: diversity. Pathologia [Internet]. 2023Apr.28 [cited 2025Jan.9];20(1):76-84. Available from: http://pat.zsmu.edu.ua/article/view/272938