Study of the capillary blood flow of the mucous membrane of the peri-implant area by laser Doppler flowmetry

Authors

DOI:

https://doi.org/10.14739/2310-1237.2023.1.273605

Keywords:

laser Doppler flowmetry, implant, capillary blood flow, plasma electrooxidation, nanoparticles

Abstract

Aim: to conduct a clinical analysis of the capillary blood flow of the mucous membrane of the peri-implant zone using laser Doppler flowmetry (LDF), as well as a comparative assessment of the effectiveness of the implanted structure with a surface, modified with silver nanoparticles (AgNP).

Materials and methods. The study involved 40 patients undergoing rehabilitation for secondary partial adentia by the method of dental implantation. The examinees were divided into 2 groups: Group 1 (20 patients) – gingival formers with a surface modified by plasma electrooxidation and doped with AgNP were installed; Group 2 (20 patients) – standard gingival formers of the used implant system with a polished surface were installed. A control group (20 patients) was formed to determine the reference values. In total, 60 patients were involved in the study. Blood flow velocity in the studied groups was determined by laser Doppler flowmetry.

Results. On the 10th day, when using gingival formers with a surface containing AgNP, a positive trend with increasing the blood flow rate of the mucous membrane of the peri-implant zone (6.97 mm/s) is determined, in contrast of using the gingival formers with a polished surface (5.425 mm/s). In the process of using the gum formers with a surface containing AgNPs, an increase in capillary blood flow rate (by 22.2 %) in a separate location is evidence of a reduction in inflammatory processes and a pronounced anti-inflammatory effect of the AgNP surface.

Conclusions. Higher (by 22.2 %) indicators of capillary blood flow rate of the mucous membrane of the peri-implant zone in patients using gingival formers containing AgNP, compared to polished formers, indicates a pronounced anti-inflammatory effect of the proposed AgNP-doped surface.

The values obtained in the group with AgNPs are as close as possible to the reference indicators of the blood flow rate in the capillary channel of the marginal gingiva of healthy people, which suggests the presence of a pronounced antimicrobial effect of silver nanoparticles on the surface of the gingival formers.

Since blood flow in tissues is directly related to oxygenation of cells, reduction of local acidosis, reduction of inflammatory reactions and determines the state of tissue immunity, as well as directly affects the quality of reparative processes in damaged tissue, the obtained results allow recommending the proposed AgNP – surface for use in clinical practice.

Author Biographies

D. Ya. Maksymov, Zaporizhzhia State Medical University, Ukraine

MD, PhD-student of the Department of Dentistry of Postgraduate Education

S. D. Varzhapetian, Zaporizhzhia State Medical University, Ukraine

MD, DSc, Professor of the Department of Dentistry of Postgraduate Education

D. P. Parkhomenko, Zaporizhzhia State Medical University, Ukraine

MD, Assistant of the Department of Therapeutic, Orthopedic and Pediatric Dentistry

V. I. Salnykov, Zaporizhzhia State Medical University, Ukraine

MD, Assistant of the Department of Dentistry of Postgraduate Education

O. M. Mishchenko, Zaporizhzhia State Medical University, Ukraine

MD, DSc, Professor, Head of the Department of Dentistry of Postgraduate Education

References

Kim, Y., Oh, T. J., Misch, C. E., & Wang, H. L. (2005). Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clinical oral implants research, 16(1), 26-35. https://doi.org/10.1111/j.1600-0501.2004.01067.x

Qiao, S., Wu, D., Wang, M., Qian, S., Zhu, Y., Shi, J., Wei, Y., & Lai, H. (2020). Oral microbial profile variation during canine ligature-induced peri-implantitis development. BMC microbiology, 20(1), 293. https://doi.org/10.1186/s12866-020-01982-6

Favero, G., Apaza Alccayhuaman, K. A., Silva, E. R., Bengazi, F., Urbizo, J., Kotsu, M., & Botticelli, D. (2020). Effect of lack of plaque control after the surgical treatment of peri-implantitis at surfaces with different characteristics: an experimental study in dogs. Oral and maxillofacial surgery, 24(4), 431-439. https://doi.org/10.1007/s10006-020-00870-7

Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia, 83, 37-54. https://doi.org/10.1016/j.actbio.2018.10.036

Shah, F. A., Thomsen, P., & Palmquist, A. (2019). Osseointegration and current interpretations of the bone-implant interface. Acta biomaterialia, 84, 1-15. https://doi.org/10.1016/j.actbio.2018.11.018

Gittens, R. A., Olivares-Navarrete, R., Schwartz, Z., & Boyan, B. D. (2014). Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta biomaterialia, 10(8), 3363-3371. https://doi.org/10.1016/j.actbio.2014.03.037

Omoniala, K. (2016). Surface Modification Strategies for Antimicrobial Titanium Implant Materials with Enhanced Osseointegration (Thesis PhD). De Montfort University. https://www.dora.dmu.ac.uk/handle/2086/14462

Lin, D. J., Fuh, L. J., & Chen, W. C. (2020). Nano-morphology, crystallinity and surface potential of anatase on micro-arc oxidized titanium affect its protein adsorption, cell proliferation and cell differentiation. Materials science & engineering. C, Materials for biological applications, 107, 110204. https://doi.org/10.1016/j.msec.2019.110204

Lin, D. J., Fuh, L. J., Chen, C. Y., Chen, W. C., Lin, J. C., & Chen, C. C. (2019). Rapid nano-scale surface modification on micro-arc oxidation coated titanium by microwave-assisted hydrothermal process. Materials science & engineering. C, Materials for biological applications, 95, 236-247. https://doi.org/10.1016/j.msec.2018.10.085

Soro, N., Saintier, N., Attar, H., & Dargusch, M. S. (2020). Surface and morphological modification of selectively laser melted titanium lattices using a chemical post treatment. Surface & Coatings Technology, 393, 125794. https://doi.org/10.1016/j.surfcoat.2020.125794

Emmelmann, C., Scheinemann, P., Munsch, M., & Seyda, V. (2011). Laser additive manufacturing of modified implant surfaces with osseointegrative characteristics. In Physics Procedia (Vol. 12, pp. 375-384). Elsevier B.V. https://doi.org/10.1016/j.phpro.2011.03.048

Pires, L. C., Guastaldi, F. P. S., Nogueira, A. V. B., Oliveira, N. T. C., Guastaldi, A. C., & Cirelli, J. A. (2019). Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation. Lasers in medical science, 34(3), 537-546. https://doi.org/10.1007/s10103-018-2626-2

Awasthi, S., Pandey, S. K., Arunan, E., & Srivastava, C. (2021). A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. Journal of materials chemistry. B, 9(2), 228-249. https://doi.org/10.1039/d0tb02407d

Drago, L., Toscano, M., & Bottagisio, M. (2018). Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review. Materials, 11(2), 326. https://doi.org/10.3390/ma11020326

Li, B., Xia, X., Guo, M., Jiang, Y., Li, Y., Zhang, Z., Liu, S., Li, H., Liang, C., & Wang, H. (2019). Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Scientific reports, 9(1), 14052. https://doi.org/10.1038/s41598-019-49941-0

Stuart, B. W., Gimeno-Fabra, M., Segal, J., Ahmed, I., & Grant, D. M. (2015). Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering. ACS applied materials & interfaces, 7(49), 27362-27372. https://doi.org/10.1021/acsami.5b08957

Ballarre, J., Aydemir, T., Liverani, L., Roether, J. A., Goldmann, W. H., & Boccaccini, A. R. (2020). Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surface and Coatings Technology, 381. https://doi.org/10.1016/j.surfcoat.2019.125138

Kulkarni Aranya, A., Pushalkar, S., Zhao, M., LeGeros, R. Z., Zhang, Y., & Saxena, D. (2017). Antibacterial and bioactive coatings on titanium implant surfaces. Journal of biomedical materials research. Part A, 105(8), 2218-2227. https://doi.org/10.1002/jbm.a.36081

Cyphert, E. L., & von Recum, H. A. (2017). Emerging technologies for long-term antimicrobial device coatings: advantages and limitations. Experimental biology and medicine, 242(8), 788-798. https://doi.org/10.1177/1535370216688572

Tite, T., Popa, A. C., Balescu, L. M., Bogdan, I. M., Pasuk, I., Ferreira, J. M. F., & Stan, G. E. (2018). Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials, 11(11), 2081. https://doi.org/10.3390/ma11112081

Rivera, L. R., Cochis, A., Biser, S., Canciani, E., Ferraris, S., Rimondini, L., & Boccaccini, A. R. (2020). Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing. Bioactive materials, 6(5), 1479-1490. https://doi.org/10.1016/j.bioactmat.2020.11.001

Soule, L. D., Pajares Chomorro, N., Chuong, K., Mellott, N., Hammer, N., Hankenson, K. D., & Chatzistavrou, X. (2020). Sol-Gel-Derived Bioactive and Antibacterial Multi-Component Thin Films by the Spin-Coating Technique. ACS biomaterials science & engineering, 6(10), 5549-5562. https://doi.org/10.1021/acsbiomaterials.0c01140

Popescu-Pelin, G., Ristoscu, C., Duta, L., Stan, G. E., Pasuk, I., Tite, T., Stan, M., Bleotu, C., Popa, M., Chifiriuc, M. C., Oktar, F. N., Nicarel, A., & Mihailescu, I. N. (2020). Antimicrobial and Cytocompatible Bovine Hydroxyapatite-Alumina-Zeolite Composite Coatings Synthesized by Pulsed Laser Deposition from Low-Cost Sustainable Natural Resources. ACS Sustainable Chemistry and Engineering, 8(10), 4026-4036. https://doi.org/10.1021/acssuschemeng.9b05031

Santos-Coquillat, A., Gonzalez Tenorio, R., Mohedano, M., Martinez-Campos, E., Arrabal, R., & Matykina, E. (2018). Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation. Applied Surface Science, 454, 157-172. https://doi.org/10.1016/j.apsusc.2018.04.267

Alves Claro, A. P. R., Konatu, R. T., Escada, A. L. do A., de Souza Nunes, M. C., Maurer-Morelli, C. V., Dias-Netipanyj, M. F., Popat K. C., & Mantovani, D. (2018). Incorporation of silver nanoparticles on Ti7.5Mo alloy surface containing TiO 2 nanotubes arrays for promoting antibacterial coating – In vitro and in vivo study. Applied Surface Science, 455, 780-788. https://doi.org/10.1016/j.apsusc.2018.05.189

Ferraris, S., & Spriano, S. (2016). Antibacterial titanium surfaces for medical implants. Materials science & engineering. C, Materials for biological applications, 61, 965-978. https://doi.org/10.1016/j.msec.2015.12.062

Jarosz, M., Pawlik, A., Szuwarzyński, M., Jaskuła, M., & Sulka, G. D. (2016). Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids and surfaces. B, Biointerfaces, 143, 447-454. https://doi.org/10.1016/j.colsurfb.2016.03.073

Croes, M., Bakhshandeh, S., van Hengel, I. A. J., Lietaert, K., van Kessel, K. P. M., Pouran, B., van der Wal, B. C. H., Vogely, H. C., Van Hecke, W., Fluit, A. C., Boel, C. H. E., Alblas, J., Zadpoor, A. A., Weinans, H., & Amin Yavari, S. (2018). Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta biomaterialia, 81, 315-327. https://doi.org/10.1016/j.actbio.2018.09.051

Motoji, H., To, M., Hidaka, K., & Matsuo, M. (2020). Vitamin C and eggshell membrane facilitate orthodontic tooth movement and induce histological changes in the periodontal tissue. Journal of oral bioscien­ces, 62(1), 80-87. https://doi.org/10.1016/j.job.2020.01.006

To, M., Matsuo, M., Wada-Takahashi, S., Sugiyama, S., Tamaki, K., & Takahashi, S. S. (2020). Microcirculation changes in gingival tissue after ultrasonic tooth preparation in beagle dogs. Journal of applied oral science : revista FOB, 28, e20190145. https://doi.org/10.1590/1678-7757-2019-0145

Wada-Takahashi, S., Hidaka, K. I., Yoshino, F., Yoshida, A., Tou, M., Matsuo, M., & Takahashi, S. S. (2020). Effect of physical stimulation (gingival massage) on age-related changes in gingival microcirculation. PloS one, 15(5), e0233288. https://doi.org/10.1371/journal.pone.0233288

Molnár, E., Lohinai, Z., Demeter, A., Mikecs, B., Tóth, Z., & Vág, J. (2015). Assessment of heat provocation tests on the human gingiva: the effect of periodontal disease and smoking. Acta physiologica Hungarica, 102(2), 176-188. https://doi.org/10.1556/036.102.2015.2.8

Funaki, S., Tokutomi, F., Wada-Takahashi, S., Yoshino, F., Yoshida, A., Maehata, Y., Miyamoto, C., Toyama, T., Sato, T., Hamada, N., Lee, M. C., & Takahashi, S. S. (2016). Porphyromonas gingivalis infection modifies oral microcirculation and aortic vascular function in the stroke-prone spontaneously hypertensive rat (SHRSP). Microbial pathogenesis, 92, 36-42. https://doi.org/10.1016/j.micpath.2015.12.009

Tanaka, Y., Toyama, T., Wada-Takahashi, S., Sasaki, H., Miyamoto, C., Maehata, Y., Yoshino, F., Yoshida, A., Takahashi, S. S., Watanabe, K., Lee, M. C., Todoki, K., & Hamada, N. (2016). Protective effects of (6R)-5,6,7,8-tetrahydro-l-biopterin on local ischemia/reperfusion-induced suppression of reactive hyperemia in rat gingiva. Journal of clinical biochemistry and nutrition, 58(1), 69-75. https://doi.org/10.3164/jcbn.15-69

Komaki, S., Ozaki, H., Takahashi, S. S., Wada-Takahashi, S., & Fushima, K. (2022). Gingival blood flow before, during, and after clenching, measured by laser Doppler blood flowmeter: A pilot study. American journal of orthodontics and dentofacial orthopedics, 161(1), 46-52. https://doi.org/10.1016/j.ajodo.2020.06.045

Broz, P., Aschwanden, M., Partovi, S., Schulte, A. C., Benz, D., Takes, M., Walker, U. A., Bilecen, D., Jaeger, K. A., & Staub, D. (2015). Assessment of cutaneous microcirculation in unaffected skin regions by transcutaneous oxygen saturation monitoring and Laser Doppler flowmetry in systemic sclerosis. Clinical hemorheology and microcirculation, 60(3), 263-271. https://doi.org/10.3233/CH-131676

Published

2023-04-28

How to Cite

1.
Maksymov DY, Varzhapetian SD, Parkhomenko DP, Salnykov VI, Mishchenko OM. Study of the capillary blood flow of the mucous membrane of the peri-implant area by laser Doppler flowmetry. Pathologia [Internet]. 2023Apr.28 [cited 2024Nov.14];20(1):69-75. Available from: http://pat.zsmu.edu.ua/article/view/273605

Issue

Section

Original research