Study of the capillary blood flow of the mucous membrane of the peri-implant area by laser Doppler flowmetry
DOI:
https://doi.org/10.14739/2310-1237.2023.1.273605Keywords:
laser Doppler flowmetry, implant, capillary blood flow, plasma electrooxidation, nanoparticlesAbstract
Aim: to conduct a clinical analysis of the capillary blood flow of the mucous membrane of the peri-implant zone using laser Doppler flowmetry (LDF), as well as a comparative assessment of the effectiveness of the implanted structure with a surface, modified with silver nanoparticles (AgNP).
Materials and methods. The study involved 40 patients undergoing rehabilitation for secondary partial adentia by the method of dental implantation. The examinees were divided into 2 groups: Group 1 (20 patients) – gingival formers with a surface modified by plasma electrooxidation and doped with AgNP were installed; Group 2 (20 patients) – standard gingival formers of the used implant system with a polished surface were installed. A control group (20 patients) was formed to determine the reference values. In total, 60 patients were involved in the study. Blood flow velocity in the studied groups was determined by laser Doppler flowmetry.
Results. On the 10th day, when using gingival formers with a surface containing AgNP, a positive trend with increasing the blood flow rate of the mucous membrane of the peri-implant zone (6.97 mm/s) is determined, in contrast of using the gingival formers with a polished surface (5.425 mm/s). In the process of using the gum formers with a surface containing AgNPs, an increase in capillary blood flow rate (by 22.2 %) in a separate location is evidence of a reduction in inflammatory processes and a pronounced anti-inflammatory effect of the AgNP surface.
Conclusions. Higher (by 22.2 %) indicators of capillary blood flow rate of the mucous membrane of the peri-implant zone in patients using gingival formers containing AgNP, compared to polished formers, indicates a pronounced anti-inflammatory effect of the proposed AgNP-doped surface.
The values obtained in the group with AgNPs are as close as possible to the reference indicators of the blood flow rate in the capillary channel of the marginal gingiva of healthy people, which suggests the presence of a pronounced antimicrobial effect of silver nanoparticles on the surface of the gingival formers.
Since blood flow in tissues is directly related to oxygenation of cells, reduction of local acidosis, reduction of inflammatory reactions and determines the state of tissue immunity, as well as directly affects the quality of reparative processes in damaged tissue, the obtained results allow recommending the proposed AgNP – surface for use in clinical practice.
References
Kim, Y., Oh, T. J., Misch, C. E., & Wang, H. L. (2005). Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clinical oral implants research, 16(1), 26-35. https://doi.org/10.1111/j.1600-0501.2004.01067.x
Qiao, S., Wu, D., Wang, M., Qian, S., Zhu, Y., Shi, J., Wei, Y., & Lai, H. (2020). Oral microbial profile variation during canine ligature-induced peri-implantitis development. BMC microbiology, 20(1), 293. https://doi.org/10.1186/s12866-020-01982-6
Favero, G., Apaza Alccayhuaman, K. A., Silva, E. R., Bengazi, F., Urbizo, J., Kotsu, M., & Botticelli, D. (2020). Effect of lack of plaque control after the surgical treatment of peri-implantitis at surfaces with different characteristics: an experimental study in dogs. Oral and maxillofacial surgery, 24(4), 431-439. https://doi.org/10.1007/s10006-020-00870-7
Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia, 83, 37-54. https://doi.org/10.1016/j.actbio.2018.10.036
Shah, F. A., Thomsen, P., & Palmquist, A. (2019). Osseointegration and current interpretations of the bone-implant interface. Acta biomaterialia, 84, 1-15. https://doi.org/10.1016/j.actbio.2018.11.018
Gittens, R. A., Olivares-Navarrete, R., Schwartz, Z., & Boyan, B. D. (2014). Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta biomaterialia, 10(8), 3363-3371. https://doi.org/10.1016/j.actbio.2014.03.037
Omoniala, K. (2016). Surface Modification Strategies for Antimicrobial Titanium Implant Materials with Enhanced Osseointegration (Thesis PhD). De Montfort University. https://www.dora.dmu.ac.uk/handle/2086/14462
Lin, D. J., Fuh, L. J., & Chen, W. C. (2020). Nano-morphology, crystallinity and surface potential of anatase on micro-arc oxidized titanium affect its protein adsorption, cell proliferation and cell differentiation. Materials science & engineering. C, Materials for biological applications, 107, 110204. https://doi.org/10.1016/j.msec.2019.110204
Lin, D. J., Fuh, L. J., Chen, C. Y., Chen, W. C., Lin, J. C., & Chen, C. C. (2019). Rapid nano-scale surface modification on micro-arc oxidation coated titanium by microwave-assisted hydrothermal process. Materials science & engineering. C, Materials for biological applications, 95, 236-247. https://doi.org/10.1016/j.msec.2018.10.085
Soro, N., Saintier, N., Attar, H., & Dargusch, M. S. (2020). Surface and morphological modification of selectively laser melted titanium lattices using a chemical post treatment. Surface & Coatings Technology, 393, 125794. https://doi.org/10.1016/j.surfcoat.2020.125794
Emmelmann, C., Scheinemann, P., Munsch, M., & Seyda, V. (2011). Laser additive manufacturing of modified implant surfaces with osseointegrative characteristics. In Physics Procedia (Vol. 12, pp. 375-384). Elsevier B.V. https://doi.org/10.1016/j.phpro.2011.03.048
Pires, L. C., Guastaldi, F. P. S., Nogueira, A. V. B., Oliveira, N. T. C., Guastaldi, A. C., & Cirelli, J. A. (2019). Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation. Lasers in medical science, 34(3), 537-546. https://doi.org/10.1007/s10103-018-2626-2
Awasthi, S., Pandey, S. K., Arunan, E., & Srivastava, C. (2021). A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. Journal of materials chemistry. B, 9(2), 228-249. https://doi.org/10.1039/d0tb02407d
Drago, L., Toscano, M., & Bottagisio, M. (2018). Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review. Materials, 11(2), 326. https://doi.org/10.3390/ma11020326
Li, B., Xia, X., Guo, M., Jiang, Y., Li, Y., Zhang, Z., Liu, S., Li, H., Liang, C., & Wang, H. (2019). Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Scientific reports, 9(1), 14052. https://doi.org/10.1038/s41598-019-49941-0
Stuart, B. W., Gimeno-Fabra, M., Segal, J., Ahmed, I., & Grant, D. M. (2015). Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering. ACS applied materials & interfaces, 7(49), 27362-27372. https://doi.org/10.1021/acsami.5b08957
Ballarre, J., Aydemir, T., Liverani, L., Roether, J. A., Goldmann, W. H., & Boccaccini, A. R. (2020). Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surface and Coatings Technology, 381. https://doi.org/10.1016/j.surfcoat.2019.125138
Kulkarni Aranya, A., Pushalkar, S., Zhao, M., LeGeros, R. Z., Zhang, Y., & Saxena, D. (2017). Antibacterial and bioactive coatings on titanium implant surfaces. Journal of biomedical materials research. Part A, 105(8), 2218-2227. https://doi.org/10.1002/jbm.a.36081
Cyphert, E. L., & von Recum, H. A. (2017). Emerging technologies for long-term antimicrobial device coatings: advantages and limitations. Experimental biology and medicine, 242(8), 788-798. https://doi.org/10.1177/1535370216688572
Tite, T., Popa, A. C., Balescu, L. M., Bogdan, I. M., Pasuk, I., Ferreira, J. M. F., & Stan, G. E. (2018). Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials, 11(11), 2081. https://doi.org/10.3390/ma11112081
Rivera, L. R., Cochis, A., Biser, S., Canciani, E., Ferraris, S., Rimondini, L., & Boccaccini, A. R. (2020). Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing. Bioactive materials, 6(5), 1479-1490. https://doi.org/10.1016/j.bioactmat.2020.11.001
Soule, L. D., Pajares Chomorro, N., Chuong, K., Mellott, N., Hammer, N., Hankenson, K. D., & Chatzistavrou, X. (2020). Sol-Gel-Derived Bioactive and Antibacterial Multi-Component Thin Films by the Spin-Coating Technique. ACS biomaterials science & engineering, 6(10), 5549-5562. https://doi.org/10.1021/acsbiomaterials.0c01140
Popescu-Pelin, G., Ristoscu, C., Duta, L., Stan, G. E., Pasuk, I., Tite, T., Stan, M., Bleotu, C., Popa, M., Chifiriuc, M. C., Oktar, F. N., Nicarel, A., & Mihailescu, I. N. (2020). Antimicrobial and Cytocompatible Bovine Hydroxyapatite-Alumina-Zeolite Composite Coatings Synthesized by Pulsed Laser Deposition from Low-Cost Sustainable Natural Resources. ACS Sustainable Chemistry and Engineering, 8(10), 4026-4036. https://doi.org/10.1021/acssuschemeng.9b05031
Santos-Coquillat, A., Gonzalez Tenorio, R., Mohedano, M., Martinez-Campos, E., Arrabal, R., & Matykina, E. (2018). Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation. Applied Surface Science, 454, 157-172. https://doi.org/10.1016/j.apsusc.2018.04.267
Alves Claro, A. P. R., Konatu, R. T., Escada, A. L. do A., de Souza Nunes, M. C., Maurer-Morelli, C. V., Dias-Netipanyj, M. F., Popat K. C., & Mantovani, D. (2018). Incorporation of silver nanoparticles on Ti7.5Mo alloy surface containing TiO 2 nanotubes arrays for promoting antibacterial coating – In vitro and in vivo study. Applied Surface Science, 455, 780-788. https://doi.org/10.1016/j.apsusc.2018.05.189
Ferraris, S., & Spriano, S. (2016). Antibacterial titanium surfaces for medical implants. Materials science & engineering. C, Materials for biological applications, 61, 965-978. https://doi.org/10.1016/j.msec.2015.12.062
Jarosz, M., Pawlik, A., Szuwarzyński, M., Jaskuła, M., & Sulka, G. D. (2016). Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids and surfaces. B, Biointerfaces, 143, 447-454. https://doi.org/10.1016/j.colsurfb.2016.03.073
Croes, M., Bakhshandeh, S., van Hengel, I. A. J., Lietaert, K., van Kessel, K. P. M., Pouran, B., van der Wal, B. C. H., Vogely, H. C., Van Hecke, W., Fluit, A. C., Boel, C. H. E., Alblas, J., Zadpoor, A. A., Weinans, H., & Amin Yavari, S. (2018). Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta biomaterialia, 81, 315-327. https://doi.org/10.1016/j.actbio.2018.09.051
Motoji, H., To, M., Hidaka, K., & Matsuo, M. (2020). Vitamin C and eggshell membrane facilitate orthodontic tooth movement and induce histological changes in the periodontal tissue. Journal of oral biosciences, 62(1), 80-87. https://doi.org/10.1016/j.job.2020.01.006
To, M., Matsuo, M., Wada-Takahashi, S., Sugiyama, S., Tamaki, K., & Takahashi, S. S. (2020). Microcirculation changes in gingival tissue after ultrasonic tooth preparation in beagle dogs. Journal of applied oral science : revista FOB, 28, e20190145. https://doi.org/10.1590/1678-7757-2019-0145
Wada-Takahashi, S., Hidaka, K. I., Yoshino, F., Yoshida, A., Tou, M., Matsuo, M., & Takahashi, S. S. (2020). Effect of physical stimulation (gingival massage) on age-related changes in gingival microcirculation. PloS one, 15(5), e0233288. https://doi.org/10.1371/journal.pone.0233288
Molnár, E., Lohinai, Z., Demeter, A., Mikecs, B., Tóth, Z., & Vág, J. (2015). Assessment of heat provocation tests on the human gingiva: the effect of periodontal disease and smoking. Acta physiologica Hungarica, 102(2), 176-188. https://doi.org/10.1556/036.102.2015.2.8
Funaki, S., Tokutomi, F., Wada-Takahashi, S., Yoshino, F., Yoshida, A., Maehata, Y., Miyamoto, C., Toyama, T., Sato, T., Hamada, N., Lee, M. C., & Takahashi, S. S. (2016). Porphyromonas gingivalis infection modifies oral microcirculation and aortic vascular function in the stroke-prone spontaneously hypertensive rat (SHRSP). Microbial pathogenesis, 92, 36-42. https://doi.org/10.1016/j.micpath.2015.12.009
Tanaka, Y., Toyama, T., Wada-Takahashi, S., Sasaki, H., Miyamoto, C., Maehata, Y., Yoshino, F., Yoshida, A., Takahashi, S. S., Watanabe, K., Lee, M. C., Todoki, K., & Hamada, N. (2016). Protective effects of (6R)-5,6,7,8-tetrahydro-l-biopterin on local ischemia/reperfusion-induced suppression of reactive hyperemia in rat gingiva. Journal of clinical biochemistry and nutrition, 58(1), 69-75. https://doi.org/10.3164/jcbn.15-69
Komaki, S., Ozaki, H., Takahashi, S. S., Wada-Takahashi, S., & Fushima, K. (2022). Gingival blood flow before, during, and after clenching, measured by laser Doppler blood flowmeter: A pilot study. American journal of orthodontics and dentofacial orthopedics, 161(1), 46-52. https://doi.org/10.1016/j.ajodo.2020.06.045
Broz, P., Aschwanden, M., Partovi, S., Schulte, A. C., Benz, D., Takes, M., Walker, U. A., Bilecen, D., Jaeger, K. A., & Staub, D. (2015). Assessment of cutaneous microcirculation in unaffected skin regions by transcutaneous oxygen saturation monitoring and Laser Doppler flowmetry in systemic sclerosis. Clinical hemorheology and microcirculation, 60(3), 263-271. https://doi.org/10.3233/CH-131676
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (SeeThe Effect of Open Access).