Immunometabolism of lymphocytes and its changes in experimental diabetes mellitus

Authors

  • A. M. Kamyshny Zaporizhia State Medical University,
  • D. A. Putilin Zaporizhia State Medical University,
  • I. E. Sukhomlinova Zaporizhia State Medical University,
  • V. A. Kamyshnaya Zaporizhia State Medical University,

DOI:

https://doi.org/10.14739/2310-1237.2016.3.87511

Keywords:

lymphocytes, immunometabolism, diabetes mellitus

Abstract

Lymphocytes are sensitive to changes in metabolism. Metabolic changes, which develop in conditions of diabetes mellitus, especially hyperglycemia, can directly influence the immunometabolism of lymphocytes. The T cells express a series of glucose transporters, the main of which is the Glut 1. The prodiabetogenic Th1 and Th17-cells that cause insulitis are characterized by high level of expression of Glut 1 and tendency to glycolysis. The suppressor Treg, on the contrary, has the low expression of Glut 1 and the high rate of oxidative metabolism.

Purpose of the study: to analyze the contemporary literature and own data, obtained concerning the immunometabolism of lymphocyte and its changes in conditions of diabetes. To determine the role of 6 key metabolic ways that play a crucial role in the differentiation and survival of immune cells: 1) glycolysis; 2) tricarboxylic acid (TCA) cycle; 3) pentose-phosphate cycle; 4) fatty acid oxidation; 5) fatty acid synthesis and 6) metabolism of amino acids, each of which have different activity level in specific types of immune cells.

Conclusions: different types of immune cells prefer different ways of metabolism. The effector Th1-, Th2-, Th17-cells and М1-macrophages use primarily glycolysis, pentose-phosphate cycle and synthesis of fatty acids, while T-regulatory, CD8+ memory cells and M2-macrophages use the TCA cycle and oxidation of fatty acids. Changes in the metabolism of different amino acids can influence the generation of effector and Treg lymphocytes. The high activity of mTOR can enhance the progression of diabetes by activating the effector proinflammatory subpopulations of lymphocytes, and vice versa, the low activity promotes the differentiation of Treg, blocking the insulitis. In our work we investigated the level of expression of mRNA of genes Glut 1, mTOR and AMPK1α in PLN of rats with experimental streptozotocin-induced diabetes and after metformin introduction and found that the hyperglycemia caused the transcription induction of the gene of glucose transporters Glut 1 in PLN cells. The increase of the level of mRNA genes of glucose transporters Glut 1 and protein kinase mTOR in immune cells in diabetes, which we determined, is an important trigger of their differentiation into effector proinflammatory Th1 and Th17 subpopulations.

References

Palmer, C. S., Cherry, C. L., Sada-Ovalle, I., Singh, A., & Crowe, S. M. (2016). Glucose Metabolism in T Cells and Monocytes. New Perspectives in HIV Pathogenesis. EBioMedicine, 6, 31–41. doi: 10.1016/j.ebiom.2016.02.012.

O'Neill, L. A., & Pearce, E. J. (2016). Immunometabolism governs dendritic cell and macrophage function. J Exp Med., 213(1), 15–23. doi: 10.1084/jem.20151570.

Michalek, R. D., Gerriets, V. A., Jacobs, S. R., Macintyre, A. N., MacIver, N. J., Mason, E. F., et al. (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol, 186, 3299–3303. doi: 10.4049/jimmunol.1003613.

Gubser, P. M., Bantug, G. R., Razik, L., Fischer, M., Dimeloe, S., Hoenger, G., et al. (2013). Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol., 14, 1064–1072. doi: 10.1038/ni.2687.

Wei, J., Long, L., Yang, K., Guy, C., Shrestha, S., Chen, Z., et al. (2016). Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol., 17, 277–285. doi: 10.1038/ni.3365.

Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., et al. (2013). Succinate is an inflammatory signal that induces IL 1β through HIF 1α. Nature., 496, 238–242. doi: 10.1038/nature11986.

Huynh, A., DuPage, M., Priyadharshini, B., Sage, P. T., Quiros, J., Borges, C. M., et al. (2015). Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol., 16, 188–196. doi: 10.1038/ni.3077.

Newton, R., Priyadharshini, B., & Turka, L. A. (2016). Immunometabolism of regulatory T cells. Nat Immunol., 17(6), 618–25. doi: 10.1038/ni.3466.

Chang, C. H., Curtis, J. D., Maggi, L. B. Jr., Faubert, B., Villarino, A. V., O'Sullivan, D., et al. (2013). Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 153, 1239–1251. doi: 10.1016/j.cell.2013.05.016.

O’Sullivan, D., van der Windt, G. J., Huang, S. C., Curtis, J. D., Chang, C. H., Buck, M. D. et al. (2014). Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity, 41, 75–88. doi: 10.1016/j.immuni.2014.06.005.

Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., et al. (2013). I mmune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA, 110, 7820–7825. doi: 10.1073/pnas.1218599110.

Everts, B., Amiel, E., Huang, S. C., Smith, A. M., Chang, C. H., Lam, W. Y., et al. (2014). TLR-driven early glycolytic reprogramming via the kinases TBK1 IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol., 15, 323–332. doi: 10.1038/ni.2833.

Haschemi, A., Kosma, P., Gille, L., Evans, C. R., Burant, C. F., Starkl, P., et al. (2012). The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab., 15, 813–826. doi: 10.1016/j.cmet.2012.04.023.

Gerriets, V. A., Kishton, R. J., Nichols, A. G., Macintyre, A. N., Inoue, M., Ilkayeva, O., et al. (2015). Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest., 125, 194–207. doi: 10.1172/JCI76012.

Feingold, K. R., Shigenaga, J. K., Kazemi, M. R., McDonald, C. M., Patzek, S. M., Cross, A. S., et al. (2012). Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. Biol., 92, 829–839. doi: 10.1189/jlb.1111537.

Lee, J., Walsh, M. C., Hoehn, K. L., James, D. E., Wherry, E. J., Choi, Y. (2014). Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol., 192, 3190–3199. doi: 10.4049/jimmunol.1302985.

Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K. (2014). De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med., 20, 1327–1333. doi: 10.1038/nm.3704.

Carr, E. L., Kelman, A., Wu, G. S., Gopaul, R., Senkevitch, E., Aghvanyan, A., et al. (2010). Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol., 185, 1037–1044. doi: 10.4049/jimmunol.0903586.

Nakaya, M., Xiao, Y., Zhou, X., Chang, J. H., Chang, M., Cheng, X., et al. (2014). Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity, 40, 692–705. doi: 10.1016/j.immuni.2014.04.007.

Rath, M., Muller, I., Kropf, P., Closs, E. I. & Munder, M. (2014). Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front. Immunol., 5, 532. doi: 10.3389/fimmu.2014.00532.

Buck, M. D., O'Sullivan, D., & Pearce, E. L. (2015). T cell metabolism drives immunity. J Exp Med., 212(9), 1345–60. doi: 10.1084/jem.20151159.

Palmer, C. S., Hussain, T., Duette, G., Weller, T. J., Ostrowski, M., Sada-Ovalle, I., & Crowe, S.M. (2016). Regulators of Glucose Metabolism in CD4+ and CD8+ T Cells. Int Rev Immunol., 35, 477–488.

Michalek, R. D., Gerriets, V. A., Jacobs, S. R., Macintyre, A. N., MacIver, N. J., Mason, E. F., et al (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol, 186(6), 3299–303. doi: 10.4049/jimmunol.1003613.

Basu, S., Hubbard, B., & Shevach, E. M. (2015). Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. J Leukoc Biol., 97(2), 279–83. doi: 10.1189/jlb.2AB0514-273RR.

Pollizzi, K. N., Patel, C. H., Sun, I. H., Oh, M. H., Waickman, A. T., Wen, J., et al. (2015). mTORC1 and mTORC2 selectively regulate CD8⁺ T cell differentiation. J Clin Invest., 125(5), 2090–108. doi: 10.1172/JCI77746.

Hardie, D. G., & Ashford, M. L. (2014). AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda), 29(2), 99–107. doi: 10.1152/physiol.00050.2013.

Chapman, N. M., & Chi, H. (2014) mTOR signaling, Tregs and immune modulation. Immunotherapy, 6(12), 1295–311. doi: 10.2217/imt.14.84.

Putilin, D. A., & Kamyshnyi, A. M. (2016). Izmeneniya urovnya e´kspressii genov GLUT1, MTOR i AMPK1α limfocitami pankreaticheskikh limfaticheskikh uzlov krys pri e´ksperimental´nom sakharnom diabete. [Changes of Glut1, mTOR AND AMPK1α gene expression in pancreatic lymph node lymphocytes of rats with experimental diabetes mellitus]. Меdicinskaya immunologiya, 18(4), 339–346. [in Russian] doi: http://dx.doi.org/10.15789/1563-0625-2016-4-339-346.

Putilin, D. A., & Kamyshnyi, A. M. (2016). Features of immune metabolism of lymphocytes in pancreatic lymph nodes during experimental steptozotocin-induced diabetes mellitus and after introduction of metformin. Mоrfоlоhiia, 10(2), 61–68. [in Ukrainian].

How to Cite

1.
Kamyshny AM, Putilin DA, Sukhomlinova IE, Kamyshnaya VA. Immunometabolism of lymphocytes and its changes in experimental diabetes mellitus. Pathologia [Internet]. 2016Dec.23 [cited 2024Apr.20];(3). Available from: http://pat.zsmu.edu.ua/article/view/87511

Issue

Section

Review