Peculiarities of expression of HIF-1Α and HIF-3Α in hypothalamus of Wistar rats under the influence of intermittent hypobaric hypoxia

Authors

  • A. V. Abramov Zaporizhzhia State Medical University, Ukraine,
  • V. A. Shamenko Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1237.2017.2.109291

Keywords:

hypoxia, hypothalamus, hypoxia-inducible factor

Abstract

The purpose of this study was to establish the features of the expression of hif1α and hif-3α genes and the accumulation of HIF-1α and HIF-3α proteins in the paraventricular (PVH) and supraoptic (SO) nuclei of the hypothalamus under the conditions of intermittent hypoxia and in post-hypoxic periods.

Materials and methods. Intermittent hypoxia was modeled by a daily 6 hour stay of rats at an altitude of 6000 m (pO2 = 9,8%) for 15 days, the posthypoxic period was 10 days. The distribution of HIF-1α and HIF-3α proteins in the hypothalamus was investigated by immunofluorescence methods. A molecular-genetic study was carried out using polymerase chain reaction with real-time reverse transcription of mRNA expression level of the hif-1α and the hif-3α gene.

Results. It was established that intermittent hypoxia led to a 13-fold increase in the mRNA level in the mediobasal hypothalamus to HIF-1α, and 8,6-fold to HIF-3α. In neurons of medial parvocellular (PVHmp) and posterior lateral magnocellular subnuclei (PVHpml) of PVH, an increase in the area of immunoreactivity to HIF-1α and to HIF-3α was observed, as well as an increase in the HIF-1α protein content of 2,5 (PVHmp) and 3,4 (PVHpml) times, and the HIF-3α protein in 1,7 and 3,0 times, respectively. In the posthypoxic period, the level of mRNA to HIF-1α and HIF-3α in the hypothalamus decreased, but for HIF-1α remained 2.5 times higher than in the control. At the same time, the content of HIF-1α and HIF-3α proteins remained increased in parvocellular neurons of PVH and decreased by 50-60% in magnocellular neurons of PVH. The reaction of neurons of SO to hypoxia was characterized by a decrease in the expression of HIF-1α and HIF 3α proteins, which was manifested by a decrease in the area of immunoreactivity in neurons partially restored in the post-hypoxic period.

Conclusion. The results show that intermittent hypoxia leads to an increase in the expression of the hif gene family and to an increase in the synthesis of HIF proteins in PVH neurons and its preservation in the post-hypoxic period.

References

Zagórska, A., & Dulak, J. (2004) HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochimicac Polonica, 51(3), 563–585. doi: 045103563.

Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell., 40, 294–309. doi: 10.1016/j.molcel.2010.09.022.

Zhang, P., Yao, Q., Lu, L., Li, Y., Chen, P. J., & Duan, C. (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Reports., 6, 1110–1121. doi: http://dx.doi.org/10.1016/j.celrep.2014.02.011.

Yang, H.-L., Chao, W., Xiong, Z.-F., & Fang, X. (2015) Progress on hypoxia-inducible factor-3: Its structure, gene regulation and biological function. Mol. Med. Reports., 12, 2411–2416. doi: 10.3892/mmr.2015.3689.

Duan, C. (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am. J. Physiol. Cell. Physiol., 310, C260–C269. doi: 10.1152/ajpcell.00315.2015.

Charmandari, E., Tsigos, C., & Chrousos, G. (2005) Endocrinology of the stress response. Annu. Rev. Physiol., 67, 259–284. doi: 10.1146/annurev.physiol.67.040403.120816.

Prabhakar, N. R., & Semenza, G. L. (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev., 92, 967–1003. doi: 10.1152/physrev.00030.2011.

Pugh, C. W. (2016) Modulation of the Hypoxic Response. Adv. Exp. Med. Biol., 903, 259–271. doi: 10.1007/978-1-4899-7678-9_18.

Lee, H.-C., & Tsai, S.-J. (2017) Endocrine targets of hypoxia-inducible factors. J. Endocrinology, 234, R53–R65. doi: 10.1530/JOE-16-0653.

Swanson, L. W., & Sawchenko, P. E. (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann. Rev. Neurosci., 6, 269–324. doi: 10.1146/annurev.ne.06.030183.001413.

Bonfiglio, J. J., Inda, C., Refojo, D., Holsboer, F., Arzt, E., & Silberstein, S. (2011) The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved. Neuroendocrinology, 94, 12–20. doi: 10.1159/000328226.

Kovacs, K. J. (2013) CRH: The link between hormonal-, metabolic- and behavioral responses to stress. J. Chem. Neuroanatomy, 54, 25–33. doi: 10.1016/j.jchemneu.2013.05.003.

Meerson, F. Z. (1981) Adaptacija, stress i profilaktika [Adaptation, stress and prevention]. Мoscow: Nauka. [in Russian].

McEwen, B. S. (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev., 87, 873–904. doi: 10.1152/physrev.00041.2006.

Silverman, A. J., & Zimmerman, E. A. (1983) Magnocellular neurosecretory system. Ann. Rev. Neurosci, 6, 357–380. doi: 10.1146/annurev.ne.06.030183.002041.

Abramov, A. V., & Kolesnik, Yu. M. (1992) Vliyanie gipoksii na funkcional'noe sostoyanie nejrosekretornoj sistemy gipotalamusa krys [Influence of hypoxia on the functional state of peptidergic neurons of the neurosecretiry system of the rat hypothalamus]. Fiziologicheskij zhurnal im. I. M. Sechenova, 78(7), 21–27. [in Russian].

Abramov, A. V. (1998) Vliyanie interval'nykh gipoksicheskikh trenirovok na funkcional'noe sostoyanie peptidergicheskikh nejronov paraventrikulyarnogo yadra gipotalamusa i nejronov stvola mozga krys [Influence of interval hypoxic training on the functional state of peptidergic neurons of the paraventricular nucleus of the hypothalamus and neurons of the rat brain stem]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova, 84(3), 173–181. [in Russian].

Kolesnik Yu.M., Kadzharyan E.V., Abramov A.V. (2014) Effect of Intermittent Hypoxia Trainings on the Functional State of Corticotropin releasing hormone- and β-Endorphin-Synthesizing Neurons of the Rat Paraventricular Nucleus of Hypothalamus. Int. J. Physiol. Pathophysiology, 5(4), 291–297. doi: 10.1615/IntJPhysPathophys.v5.i4.20.

Gajdyshev, I. P. (2004) Reshenie nauchnykh i inzhenernykh zadach sredstvami Excel, VBA i C/C++. [Solution of scientific and engineering problems by means of Excel, VBA and C/C++]. Saint Petersburg [in Russian].

Tsigos, C., & Chrousos, G. P. (2002) Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosomatic Res., 53, 865–871. doi: 10.1016/S0022-3999(02)00429-4.

Shamenko, V. O. (2014) Morfogistokhimicheskaya kharakteristika nejronov supraopticheskogo yadra gipotalamusa krys pri dejstvii preryvistoj gipoksii [The morpho-histochemical characteristics of neurons of supraoptic nucleus of the rat hypothalamus under intermittent hypoxia]. Ezhemesyachnyj nauchnyj zhurnal Fonda «Biolog», 4, 29–32 [in Russian].

Virtue, S., & Vidal-Puig, A. (2011) Nothing Iffy about HIF in the Hypothalamus. PLoS Biol., 9(7), e1001116. doi:10.1371/journal.pbio.1001116.

Zhang, H., Zhang, G., Gonzalez, F. J., Park, S., & Cai, D. (2011) Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation. PLoS Biol., 9(7), e1001112. doi: 10.1371/journal.pbio.1001112.

Harrell, C. S., Rowson, S. A., & Neigh, G. N. (2015) Pharmacological stimulation of Hypoxia Inducible Factor-1 α facilitates the corticosterone response to a mild acute stressor. Neurosci Lett, 600, 75–79. doi: 10.1016/j.neulet.2015.05.051.

Maiti, P., Singh, S. B., Sharma, A. K., Muthuraju, S., Banerjee, P. K., & Ilavazhagan, G. (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochemistry International, 49, 709–716. doi: 10.1016/j.neuint.2006.06.002.

Doyle, K. P., Simon, R. P., & Stenzel-Poore, M. P. (2008) Mechanisms of ischemic brain damage. Neuropharmacology, 55(3), 310–318. doi: 10.1016/j.neuropharm.2008.01.005.

Khoshnam, S. E., Winlow, W., Farzaneh, M., Farbood, Y., & Moghaddam, H. F. (2017) Pathogenic mechanisms following ischemic stroke. Neurol. Sci., 38(7), 1167–1186. doi: 10.1007/s10072-017-2938-1.

Terraneo, L., Paroni, R., Bianciardi, P., Giallongo, T., Carelli, S., Gorio, A., & Samaja, M. (2017) Brain adaptation to hypoxia and hyperoxia in mice. Redox Biology, 11, 12–20. doi: 10.1016/j.redox.2016.10.018.

Li, Q. F., Wang, X. R., Yang, Y. W., & Lin, H. (2006) Hypoxia upregulates hypoxia inducible factor (HIF)-3alpha expression in lung epithelial cells: Characterization and comparison with HIF-1alpha. Cell Res., 16(6), 548–558. doi: 10.1038/sj.cr.7310072.

Khan, M., Khan, H., Singh, I., & Singh, A. K. (2017) Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury. Neural Regen. Res., 12(5), 696–701. doi: 10.4103/1673-5374.206632.

Li, L., Candelario, K. M., Thomas, K., Wang, R., Wright, K., Messie,r A., & Cunningham, L. A. (2014) Hypoxia inducible factor-1 α (HIF-1 α ) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ. J. Neurosci., 34, 16713–16719. doi: 10.1523/JNEUROSCI.4590-13.2014.

Sun, Y., He, W., & Geng, L. (2016) Neuroprotective mechanism of HIF-1α overexpression in the early stage of acute cerebral infarction in rats. Experimental and Therapeutic Medicine, 12(1), 391–395. doi: 10.3892/etm.2016.3288.

Piret, J. P., Mottet, D., Raes, M., & Michiels, C. (2002) Is HIF-1 α a pro- or an anti-apoptotic protein? Biochem. Pharmacology, 64(5–6), 889–892. doi: 10.1016/S0006-2952(02)01155-3.

Tanaka, T., Wiesener, M., Bernhardt, W., Eckardt, K. U., & Warnecke, C. (2009) The human HIF (hypoxia-inducible factor)-3alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochem. J., 424, 143–151. doi: 10.1042/BJ20090120.

How to Cite

1.
Abramov AV, Shamenko VA. Peculiarities of expression of HIF-1Α and HIF-3Α in hypothalamus of Wistar rats under the influence of intermittent hypobaric hypoxia. Pathologia [Internet]. 2017Sep.27 [cited 2024Apr.16];(2). Available from: http://pat.zsmu.edu.ua/article/view/109291

Issue

Section

Original research